Parallel & Scalable Machine Learning

Introduction to Machine Learning Algorithms

Prof. Dr. — Ing. Morris Riedel

Adjunct Associated Professor
School of Engineering and Natural Sciences, University of Iceland

Research Group Leader, Juelich Supercomputing Centre, Germany

LECTURE 6

Validation & Regularization

February 26, 2019
Juelich Supercomputing Centre, Juelich, Germany

TRAINING PORTAL

N °§ SCHOOL OF ENGINEERING AND NATURAL SCIENCES Projects
915;'-1"‘\

@) JULICH HELMHOLTZ [W“’]

RS

Forschungszentrum

FACULTY OF INDUSTRIAL ENGINEERING,
MECHANICAL ENGINEERING AND COMPUTER SCIENCE

Review of Lecture 5 — Feed Forward Neural Networks

(minimization: substract gradient term

195 2 StOChaSt|C G ra d |e nt because we move towards local minima)
Desce nt (the derivative of f
° Optlmlzatlon with respect to a)
b=a—-~V f(a)
(old position (gradient term
before the step) is steepest ascent)
(new position (weighting factor known as step-size,
after the step) can change at every iteration,
. also called learning rate)
1958 Perceptron Linear o
Learning Model
* Learnable Weights
[]
[}
[]
:::t: "Il'\r’:iir;:t::e Sum Non-Linearity
1986 Backpropagation of Error in

Learning through Layers

f(x)

position b
(next position)

position a (current position)

(one step towards
local minimum)

non-linear
activation function

~@—® 17’

Output

Output

i 1
e Multi-Layer Perceptron X, e BT e
W,y R
oul/ Wa u/
X, —(n n, Wiq
@ Layer
K

(forward pass)

Lecture 6 — Validation & Regularization

!
1

Bias

Layer
K+1

X

linear combination
of input data

1*w0+§:xi

=1

f

Sum

!

* W;

W3y

X, M g Ws3

Wiy \

A(ng— v

W3, /

%, — @A —— R ™
2 2/ 4,
Wi,
Layer Layer
K K+1

(backward pass)

2/71

Outline of the Course

Parallel & Scalable Machine Learning driven by HPC

1.

2. Introduction to Machine Learning Fundamentals
3. Introduction to Machine Learning Fundamentals
4, Feed Forward Neural Networks

5. Feed Forward Neural Networks

6. Validation and Regularization

7. Validation and Regularization

8. Data Preparation and Performance Evaluation

9. Data Preparation and Performance Evaluation
10. Theory of Generalization

11. Unsupervised Clustering and Applications

12. Unsupervised Clustering and Applications

13. Deep Learning Introduction

Lecture 6 — Validation & Regularization

Theoretical Lectures

Practical Lectures

3/71

Outline

Lecture 6 — Validation & Regularization 4/71

Outline

= Validation for Model Selection

Problem of Overfitting

Overfitting Reasoning & Validation
Creating ANN Network Topologies
Many Parameters & Hidden Layers
Validation Datasets & Splits

= Regularization

Overfitting Reasoning

Regularization & Validation Counter Approach
Regularization Techniques

Dropout Regularizer

Optimizers RMSprop & Adam

Lecture 6 — Validation & Regularization

Validation for Model Selection

O
O 0

Lecture 6 — Validation & Regularization 6/71

Machine Learning Challenges — Problem of Overfitting

= Overfitting refers to fit the data too well — more than is warranted — thus may misguide the learning
= Qverfitting is not just ‘bad generalization’ - e.g. the VC dimension covers noiseless & noise targets
= Theory of Regularization are approaches against overfitting and prevent it using different methods

= Key problem: noise in the target function leads to overfitting

= Effect: ‘noisy target function” and
its noise misguides the fit in learning

(target)

(overfit)

= There is always ‘some noise’ in the data noise)
noise

= Conseguence: poor target function
(‘distribution’) approximation

= Example: Target functions is second \r
order polynomial (i.e. parabola)
= Using a higher-order polynomial fit (but simple polynomial works good enough)

" (‘over’: here meant as 4th order,
= Perfect fit: low Ein (g) ’ but Iarge Eout (g) a 3" order would be better, 2" best)

Lecture 6 — Validation & Regularization

Problem of Overfitting — Clarifying Terms

= A good model must have low training error (E;,) and low generalization error (E_,)

*= Model overfitting is if a model fits the data too well (E,,) with a poorer generalization error (E_,)
than another model with a higher training error (E,,)

[1] Introduction to Data Mining

= Qverfitting & Errors
= . (g) goes down error
= F (g)goesup

= ‘Bad generalization area‘ ends
= Good to reduce F. (¢g)

(‘generalization error’) Eout (g)

(“training error’)

E,.(9)

>

= ‘Overfitting area’ starts
= Reducing . (g) does not help

(frya: s o Training time
= Reason "fitting the noise’ g4 generalization€ ¢ -> overfitting oCCUrs

= The two general approaches to prevent overfitting are (1) regularization and (2) validation

Lecture 6 — Validation & Regularization

Terminologies & Different Dataset Elements

Target Function f: X =Y

= |deal function that ‘explains‘ the data we want to learn
Labelled Dataset (samples)

= ‘in-sample’ data given to us: (X, Y,), ---, (Xx, Yy)
Learning vs. Memorizing

= The goal is to create a system that works well ‘out of sample’
= |n other words we want to classify ‘future data‘ (ouf of sample) correct

Dataset Part One: Training set
= Used for training a machine learning algorithms
= Result after using a training set: a trained system
Dataset Part Two: Test set

= Used for testing whether the trained system might work well
= Result after using a test set: accuracy of the trained model

Lecture 6 — Validation & Regularization

Model Evaluation — Training and Testing Phases

= Different Phases in Learning (cf. day one remote sensing)
= Training phase is a hypothesis search

= Testing phase checks if we are on right track
(once the hypothesis clear)

= Work on ‘training examples’

= Create two disjoint datasets _

‘training set’

I

‘test set’

= One used for training only
(aka training set)

Training Examples
(%, 3,): 40 (%31
= Another used for teStmg Only (historical records, grc')undtruth data, examples)

(aka test set)

= Exact seperation is rule of thumb per use case (e.g. 10 % training, 90% test)

= Practice: If you get a dataset take immediately test data away
(‘throw it into the corner and forget about it during modelling‘)

= Reasoning: Once we learned from training data it has an ‘optimistic bias’

Lecture 6 — Validation & Regularization

Learning Approaches — Supervised Learning — Formalization

*= Each observation of the predictor measurement(s)
has an associated response measurement:

" lnput X=x,...,0

d Training Examples
u Output y.“Z — 1,..,?1 (Xlayl)v"'v(XvaN)
= Data (Xl : yl) Yoo (XN : yN) (historical records, groundtruth data, examples)

" Goal: Fit a model that relates the response to the predictors

= Prediction: Aims of accurately predicting the response for future
observations

= |nference: Aims to better understanding the relationship between the
response and the predictors

= Supervised learning approaches fits a model that related the response to the predictors
= Supervised learning approaches are used in classification algorithms such as SVMs
= Supervised learning works with data = [input, correct output]

[1] An Introduction to Statistical Learning

Supervised Learning — Training Examples

Unknown Target Distribution P (y ‘X) Probability Distribution Elements we
not exactly
target function f . X — Y plus noise P on X (need to) know
] "L
(ideal function) l
]
]
' ‘constants’
] pr— b
H X (:El’ e :Ed) X in learning
]
MNIST dataset J/) Elements we
. . must and/or
Training Examples Error Measure should have and
(XU yl)7 oo (XN? yN) ﬁe(x)@ that might raise
huge demands
(historical records, grolindtruth data, examples) SRR

Learning Algorithm (‘train a system’) Final Hypothesis
A < g~ f

Hypothesis Set
H=1{h};, geH

Lecture 6 — Validation & Regularization

12/71

Handwritten Character Recognition MNIST Dataset

" Metadata
= Subset of a larger dataset from US National Institute of Standards (NIST)
= Handwritten digits including corresponding labels with values 0 to 9

= All digits have been size-normalized to 28 * 28 pixels
and are centered in a fixed-size image for direct processing

= Not very challenging dataset, but good for experiments / tutorials

Sl folal
m CAN 7 . 7

Dataset Samples ok iclals

= Labelled data (10 classes) PG 7] 0 =€ @ = ¢ []]

" Two separate files 8 m 7113191 [8] 151 3] 3] 3]

for training and test % % % % % g %

= 60000 training samples (~47 MB) =z 1] &l 3] & 2 /]2 [Z] 8

= 10000 test samples (~7.8 MB) % % % % % %

Lecture 6 — Validation & Regularization

Supervised Learning — Many Hypothesis to Choose

Unknown Target Distribution P((} [X)
target function f .4 — Y plus noise ,

(ideal fuinction)

(_____-_-_-

Training Examples

(Xm yl)7 Tt (XNt y\!)

(historical records, gropndtruth data, examples)

\

Learning Algorithm (‘train a system?)

Probability Distribution

P on X

!

X =(r,..,rv,)e— X

A <

(set of known algorithms)

Hypothesis Set

H={h}; ge™H

(set of candidate formulas)

Error Measure
>e(x)<€
A4 4
Final Hypothesis
> 2
g~ f

(final formula)

Elements we
not exactly
(need to) know

‘constants’
in learning

Elements we
must and/or
should have and
that might raise
huge demands
for storage

Elements
that we derive
from our skillset
and that can be
computationally
intensive

Elements
that we
derive from
our skillset

Different Models — Understanding the Hypothesis Set

Hypothesis Set

H={h}; geH

H=1hy,....,hn};

(all candidate functions
derived from models
and their parameters)

Choosing from various model approaches h,, ...,

h,, is a different hypothesis

Additionally a change in model parameters of
h,, ..., h,, means a different hypothesis too

‘select one function’
that best approximates

Final Hypothesis

g=f

Lecture 6 — Validation & Regularization

—

hg

(e.g. support vector machine model)

output

(activation
function)

input nodes X, (bias)
(representing the threshold)

(e.g. linear perceptron model)

(e.g. artificial neural network model)

Supervised Learning — Training Examples

Unknown Target Distribution Probability Distribution Elements we
- P ('!} IX) ' not exactly
target function f X —Y plus noise P on X (need to) know
. A
(ideal function) \l/
]
]
] . ‘
| X = (:El : : :Ed) ¢ X 'constan‘ts
H in learning
i
\:/ Elements we
- must and/or
Training Examples Error Measure should have and
(X“ ’yl), eey (XN,,:IJV))e(x)(that might raise
- huge demands
(historical records, grohindtruth data, examples) for storage
\ ok . v " " I:;Ieme:ts.
Learning Algorithm (‘train a system?) ackpropagation Final Hypothesis fror(:r :fr slfi'}ll‘s,zt
A € > q ~](and that can be
. . computationally
(set of known algorithms) (final formula) s
Elements
Hypothesis Set Artificial that we
H — {h} . g - 7‘[Neural derive from
— Network our skillset
(set of candidate formulas)

Artificial Neural Network (ANN)

= Simple perceptrons fail: ‘not linearly seperable’

0 0 -1
1 0 1
0 1 1
1 1 -1

Labelled Data Table

Decision Boundary

Lecture 6 — Validation & Regularization

(Idea: instances can be classified using
two lines at once to model XOR)

Two-Layer, feed-forward Artificial Neural Network topology

High-level Tools — Keras

= Keras is a high-level deep learning library implemented in Python that works on top of
existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano

= The key idea behind the Keras tool is to enable faster experimentation with deep networks

= Created deep learning models run seamlessly on CPU and GPU via low-level frameworks

keras.layers.Dense (units,

activation=None,

use bias=True,

kernel initializer='glorot uniform',
bias initializer='zeros',

kernel regularizer=None,

bias regularizer=None,

activity regularizer=None,

kernel constraint=None,
bias constraint=None)

keras.optimizers.SGD(1lr=0.01,

momentum=0.0,
decay=0.0,
nesterov=False)

Tool Keras supports inherently
the creation of artificial neural
networks using Dense layers
and optimizers (e.g. SGD)

Includes regularization (e.g.
weight decay) or momentum

K e ra S [2] Keras Python Deep Learning Library

ANN — MNIST Dataset — Create ANN Blueprint

v’ Data Preprocessing done (i.e. data normalization, reshape, etc.)

1. Define a neural network topology
= Which layers are required?
= Think about input layer need to match the data — what data we had?
= Maybe hidden layers?
= Think Dense layer — Keras?
= Think about final Activation as Softmay (cf. Day One) = output probability

2. Compile the model 2 model representation for Tensorflow et al.
= Think about what loss function you want to use in your problem?
= What is your optimizer strategy, e.g. SGD (cf. Day One)

3. Fit the model = the model learning takes place
= How long you want to train (e.g. NB_EPOCHS)
= How much samples are involved (e.g. BATCH SIZE)

Lecture 6 — Validation & Regularization

Exercises — Create a Simple ANN Model — One Dense

Lecture 6 — Validation & Regularization

MNIST Dataset — Model Parameters & Data Normalization

import numpy as np

from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.optimizers import SGD

from keras.utils import np utils

parameter setup

NB EPOCH = 20

BATCH SIZE = 128

NB CLASSES = 10 # nt UE GULGHLIES]

OPTIMIZER = SGD() # of
VERBOSE = 1

download and shuffied as training and testing set
(X train, y train), (X test, y test) = mnist.load data()
X train is 60000 rows of 28x28 values —--> reshaped in

RESHAPED = 784

X train = X train.reshape (60000, RESHAPED)
X test = X test.reshape (10000, RESHAPED)

X train = X train.astype('float32")

XAl si=RE X e sialsisypel@smlio i3 288)

normalize
X train /= 255
XSSt /= 255

6000
60000 x

784

NB_CLASSES: 10 Class Problem

NB_EPOCH: number of times the model is
exposed to the overall training set — at each
iteration the optimizer adjusts the weights
so that the objective function is minimized

BATCH_SIZE: number of training instances
taken into account before the optimizer
performs a weight update to the model

OPTIMIZER: Stochastic Gradient Descent
(‘SGD’) — only one training sample/iteration

T T e
#f OUutput numoer samples

print (X_train.shape[0], 'train samples')
print (X_test.shape[0], 'test samples')

= Data load shuffled between
training and testing set in files

Data preparation, e.g. X_train is
) 60000 samples / rows of 28 x 28
\ pixel values that are reshaped in
60000 x 784 including type
specification (i.e. float32)

= Data normalization: divide by
255 — the max intensity value
to obtain values in range [0,1]

MNIST Dataset — A Multi Output Perceptron Model

* The Sequential() Keras model || =

is a linear pipeline (aka ‘a
stack’) of various neural
network layers including
Activation functions of
different types (e.g. softmax)

Dense() represents a fully
connected layer used in
ANNs that means that each
neuron in a layer is
connected to all neurons
located in the previous layer

®* The non-linear activation
function ‘softmax‘is a
generalization of the
sigmoid function — it
squashes an n-
dimensional vector of

N\ . .
convert class label vectorsesing one hot encoding

p arbitrary real values into a

n-dimenensional vector of
real values in the range of
0and 1-here it
aggregates 10 answers
provided by the Dense
layer with 10 neurons

Loss function is a multi-class
logarithmic loss: target is ti,j
and prediction is pi,j

"
Y_train = np_utils.to_categoric®L(y_train, NB_CLASSES) _—’— ,’
Y_test = np_utils.to_categorical test, NB_CLA§§ES7"' ’
- ’
- "I
model Keras sequential ,l
model = Sequential() ,/
’I
add fully connected layer — input with output s
model. add (Dense (NB_CLASSES, qinput_shape=(RESHAPED,))) ,’
4
4
add activation function layer to get class probabilities ,’
model.add(Activation('softmax'))
printout a summary of the model to understand model complexity
model. summary () n
specify loss, optimizer and metric I —
model.compile(loss='categorical_crossentropy', optimizer=OPTIMIZER, metrics=['accuracy'])
model training
history = model.fit(X_train, Y_train, batch_size=BATCH_SIZE, epochs=NB_EPOCH, verbose=VERBOSE) \-
S\
N
model evaluation \\
S\

score = model.evaluate(X_test, Y_test, verbose=VERBOSE)
print("Test score:", score[0])
print('Test accuracy:', score[1l])

= —iji.j log(fJE-J}

\‘I * Train the model (‘fit’)

MNIST Dataset & Model Summary & Parameters

= Activation Function Softmax

= Softmax enables probabilities for 10 classes

Layer (type) Output Shape Param #

(Dense (Softmax (output dense 1 (Dense) (None, 10) 7850

Layer) probabilities)
activation 1 (Activation) (None, 10) 0
\\
\ I’ Total params: 7,850
\ P4
\
,I
’ \
’ S
4

' d
Trainable params: 7,850
- e Non-trainable params: 0
~ (parameters = 784 * 10 + 10 bias
= 7850)

(input m =784) (10 neurons sum (softmax (NB_CLASSES = 10)
with 10 bias) activation)

= Relevant for validation: Choosing a model with different layers is a model selection that directly also
influences the number of parameters (e.g. add Dense layer from Keras means new weights)

printout a summary of the model to understand model complexity
model . summary ()

Lecture 6 — Validation & Regularization

Model Evaluation — Testing Phase & Confusion Matrix

= Modelis fixed

= Model is just used with the testset
= Parameters are set

= Evaluation of model performance
= Counts of test records that are incorrectly predicted
= Counts of test records that are correctly predicted
= E.g.create confusion matrix for a two class problem

Counting per sample Predicted Class
Class=1 Class=0

Actual Class=1 fiq fio

Class Class=0 ior Tog

(serves as a basis for further performance metrics usually used)

Lecture 6 — Validation & Regularization 24/71

Model Evaluation — Testing Phase & Performance Metrics

Counting per sample Predicted Class
Class =1 Class=0

Actual Class = 1 f f (100% accuracy in learning often
points to problems using machine
CI 11 10 . bl . hi
ass Class=0 fo1 foo learning methos in practice)

= Accuracy (usually in %)

number of correct predictions
total number of predictions

Accuracy =

= Error rate
number of wrong predictions
total number of predictions

Error rate =

Lecture 6 — Validation & Regularization 25/71

Exercises — Evaluate Multi Output Perceptron Model

Lecture 6 — Validation & Regularization

MNIST Dataset — A Multi Output Perceptron Model — Output

Epoch 7/20
60000/60000 [1] - 2s 26us/step - loss: 0.4419 - acc: 0.8838
Epoch 8/20
60000/60000 [] - 2s 26us/step - loss: 0.4271 - acc: 0.8866
Epoch 9/20
60000/60000 [] - 2s 25us/step - loss: 0.4151 - acc: 0.8888
Epoch 10/20
60000/60000 [1 - 2s 26us/step - loss: 0.4052 - acc: 0.8910
Epoch 11/20
60000/60000 [1] - 2s 26us/step - loss: 0.3968 - acc: 0.8924
Epoch 12/20
60000/60000 [] - 2s 25us/step - loss: 0.3896 - acc: 0.8944
Epoch 13/20
60000/60000 [1 - 2s 26us/step - loss: 0.3832 - acc: 0.8956
Epoch 14/20
60000/60000 [] - 2s 25us/step - loss: 0.3777 - acc: 0.8969
Epoch 15/20
60000/60000 [] - 2s 25us/step - loss: 0.3727 - acc: 0.8982
Epoch 16/20
60000/60000 [1] - 1s 24us/step - loss: 0.3682 - acc: 0.8989
Epoch 17/20
60000/60000 [] - 1s 25us/step - loss: 0.3641 - acc: 0.9001
Epoch 18/20
60000/60000 [] - 1s 25us/step - loss: 0.3604 - acc: 0.9007
Epoch 19/20
60000/60000 [1 - 2s 25us/step - loss: 0.3570 - acc: 0.9016
Epoch 20/20
60000/60000 [] - 1s 24us/step - loss: 0.3538 - acc: 0.9023

model evaluation

score = model.evaluate (X test, Y test, verbose=VERBOSE)
print ("Test score:", score[0])

print ('Test accuracy:', score[l]

10000/10000 [1 - 0s 4lus/step v Multi Output Perceptron:
Test score: 0.33423959468007086
Test accuracy: 0.9101 ~91,01% (20 EpOChS)

Lecture 6 — Validation & Regularization

ANN — MNIST Dataset — Extend ANN Blueprint

v’ Data Preprocessing done (i.e. data normalization, reshape, etc.)
v" Initial ANN topology existing
v’ Initial setup of model works (create, compile, fit)

= Extend the neural network topology
= Which layers are required?
= Think about input layer need to match the data — what data we had?
= Maybe hidden layers?
= How many hidden layers?
= What activation function for which layer (e.g. maybe RelU)?
= Think Dense layer — Keras?
= Think about final Activation as Softmay (cf. Day One) = output probability

Selected Activation Functions

= Rectified Linear Unit = Tanh

Xy
1 -5 0 1 -5 -0.9999092
2 -4 0 2 —4 -0.89993293
3 30 3 -3 -0.9950548
4 2 0 b d 4 -2 -0.9640276
) . 10 [6] big-data.tips 5 -1 -0.7615042
[5] blg'data.t'ps, v 00 ‘ ,g p ’ 6 0 0.0000000
P , 7 11 tanh 1 0.7615942
Relu Neural Network 8 22 T
9 35y [3 0.9950548
10 4 4 10 4 0.9993293
11 B 11 D 0.9999092

model.add (Dense(N_HIDDEN)) K model.add(Dense(N_HIDDEN))
model.add (Activation('relu')) model.add (Activation('tanh'))

Lecture 6 — Validation & Regularization

Exercises — Add Two Hidden Layers

I v" Multi Output Perceptron: ~91,01% (20 Epochs)

Lecture 6 — Validation & Regularization

ANN — MNIST Dataset — Add Two Hidden Layers

= All parameter value remain the same as before

= We add N_HIDDEN as parameter in order to set 128 neurons in
one hidden layer — this number is a hyperparameter that is not
directly defined and needs to be find with parameter search

parameter setup
NB_EPOCH = 20

BAIICHESTZEE=1 98

NB_CLASSES = 10 # number of outputs = number of digits
OPTIMIZER = SGD() # optimization technique

VERBOSE = 1

N_HIDDEN = 128 # number of neurons in one hidden layer

model Keras sequential

model

= Sequential()

modeling step y
2 hidden layers each N_HIDDEN neurons P

model.
model.
model.
model.
model.

add (Dense (N_HIDDEN, qinput_shape=(RESHAPED,))) s
add(Activation('relu'))
add (Dense (N_HIDDEN))
add(Activation('relu'))
add (Dense (NB_CLASSES))

add
model.

activation function layer to get class probabilities
add (Activation('softmax'))

The non-linear Activation
function ‘relu’ represents a
so-called Rectified Linear
Unit (ReLU) that only
recently became very
popular because it
generates good
experimental results in
ANNs and more recent
deep learning models — it
just returns 0 for negative
values and grows linearly
for only positive values

A hidden layer in an ANN
can be represented by a
fully connected Dense
layer in Keras by just
specifying the number of
hidden neurons in the
hidden layer

MNIST Dataset & Model Summary & Parameters

* Added two Hidden Layers

= Each hidden layers has 128 neurons

Layer (type) Output Shape Param #
Input Hidden Layers Output dense_1 (Dense) (None, 128) 100480
activation_1 (Activation) (None, 128) 0
dense_2 (Dense) (None, 128) 16512
Q—» T
s activation_2 (Activation) (None, 128) 0]
dense_3 (Dense) (None, 10) 1290
.—? Y. activation_3 (Activation) (None, 10) [0]

Total params: 118,282
Trainable params: 118,282
Non-trainable params: ©

= Relevant for validation: Choosing a model with different layers is a model selection that directly also
influences the number of parameters (e.g. add Dense layer from Keras means new weights)

printout a summary of the model to understand model complexity
model . summary ()

Lecture 6 — Validation & Regularization

ANN 2 Hidden — MNIST Dataset — Output

Epoch 7/20

60000/60000 [==============================] - 1ls 1l8us/step - loss: 0.2743 - acc: 0.,9223

Epoch 8/20

60000/60000 [==============================] - 1s 18us/step - loss: 0.2601 - acc: 0.9266

Epoch 9/20

60000/60000 [==============================] - 1ls 1l8us/step - loss: 0.2477 - acc: 0.9301

Epoch 10/20

60000/60000 [==========z=====================] - 1s 18us/step - loss: 0.2365 - acc: 0.9329

Epoch 11/20

60000/60000 [==============================] - 1s 18us/step - loss: 0.2264 - acc: 0.9356

Epoch 12/20

60000/60000 [==============================] - 1ls 18us/step - loss: 0.2175 - acc: 0.9386

Epoch 13/20

60000/60000 [==============================] - 1s 18us/step - loss: 0.2092 - acc: 0.9412

Epoch 14/20

60000/60000 [==============================] - 1ls 18us/step - loss: 0.2013 - acc: 0.9432

Epoch 15/20

60000/60000 [==============================] - 1s 18us/step - loss: 0.1942 - acc: 0.9454

Epoch 16/20

60000/60000 [==============================] - 1ls 1l8us/step - loss: 0.1876 - acc: 00,9472

Epoch 17/20

60000/60000 [==============================] - 1s 18us/step - loss: 0.1813 - acc: 0.9487

Epoch 18/20

60000/60000 [==============================] - 1ls 1l8us/step - loss: 0.1754 - acc: 0.9502

Epoch 19/20

60000/60000 [==============================] - 1s 18us/step - loss: 0.1700 - acc: 0.9522

Epoch 20/20

60000/60000 [==============================] - 1ls 1l8us/step - loss: 0.1647 - acc: 0.9536

model evaluation

score = model.evaluate(X_test, Y_test, verbose=VERBOSE) v Multi Output Perceptron:
print("Test score:", score[0])

print('Test accuracy:', score[l]) ~91;01% (20 EPOChS)
10000/10000 [==============================] - 0s 33us/step v ANN 2 Hidden Layers:
Test score: 0.16286438911408185

Test accuracy: 0.9514 ~95I14 % (20 EPOChS)

Lecture 6 — Validation & Regularization

Validation & Model Selection — Terminology

= The ‘Validation technique’ should be used in all machine learning or data mining approaches
= Model assessment is the process of evaluating a models performance

= Model selection is the process of selecting the proper level of flexibility for a model

modified from [4] ‘An Introduction to Statistical Learning’
*" ‘Training error’
= Calculated when learning from data (i.e. dedicated training set)
= ‘Test error’
= Average error resulting from using the model with ‘new/unseen data’

= ‘new/unseen data‘ was not used in training (i.e. dedicated test set)

" |n many practical situations, a dedicated test set is not really available
- lVa | Id ation Set/ (split creates a 'f:vo subsets of compaﬂrable size)

= Split data into training & validation set

= ‘Variance’ & ‘Variability’
= Result in different random splits (right)

Lecture 6 — Validation & Regularization

Validation Technique — Formalization & Goal

= Validation is a very important technique to estimate the out-of-sample performance of a model
= Main utility of regularization & validation is to control or avoid overfitting via model selection

" Regularization & Validation
= Approach: introduce a ‘overfit penalty’ that relates to model complexity
= Problem: Not accurate values: ‘better smooth functions’

(regularization uses a term that captures the overfit penalty)

Eout (h) — E (h) -+ overﬁt penalty (minimize both to be better proxy for E_ ;)

mn

? !

(validation estimates (regularization estimates
this quantity) this quantity)

- V |d . (measuring E_, is not possible as this is an unknown quantity,
alidation another quantity is needed that is measurable that at least estimates it)

m Goal ‘estimate the Out—of—samp|e error’ (establish a quantity known as validation error)

= Distinct activity from training and testing (testing also tries to estimate the E,)

Lecture 6 — Validation & Regularization

Validation Technique — Pick one point & Estimate E_,

0

TrainingiExamples :
(Xlﬁy1)7'='7(XN7yN) :
J

|

|

0

— —, (activity below is what we do for testing,
but call it differently for another purpose)

‘training set’ ‘test set’

K

(involved in validation)

* Understanding ‘estimate’ E_,
= Onone out-of-sample point (x,y) the erroris e(h(x),y)

» E.g.usesquared error: e(h(x), f(x)) = (h(x) — f(x))?

e(h(x),y) = (h(x) — y)”

= Use this quantity as estimate for E_; (poor estimate)

= Term ‘expected value’ to formalize (probability theory)

Probability Distribution

(Taking into account the theory of Lecture 1 with probability distribution on X etc.) Pon X

ey T,)€
K [e (h(x) : y)] = F . (h) (aka the long-run average value of repetitions of the experiment)

(one point as unbiased estimate of E

(aka ‘random variable’) X = (.SC

that can have a high variance leads to bad generalization)

out

Lecture 6 — Validation & Regularization

Validation Technique — Validation Set

= Validation set consists of data that has been not used in training to estimate true out-of-sample
= Rule of thumb from practice is to take 20% (1/5) for validation of the learning model

= Solution for high variance in expected values Ele(h(x),y)] = Eyu(h)

= Take a ‘whole set’ instead of just one point (x,) for validation

TraininglExamples (we need points not used in training
(X17 Y), 4o (XNa ?JN) to estimate the out-of-sample performance)

(involved in training+test) K (involved in validation)

= |dea: K data points for validation

(we do the same approach with the
testing set, but here different purpose)

(le yl)? " (XK, yK) (validation set) wl E 6 k-; yk (validation error)
= Expected value to ‘measure’ (expected values averaged over set)
the out-of-sample error
E[Eval Z E k yk)] Eout

= ‘Reliable estimate’ if Kis large
(on rarely used validation set,

)) (this gives a much better (lower) variance than on a single point given K is large)
otherwise data gets contaminated)

Lecture 6 — Validation & Regularization

Validation Technique — Model Selection Process

= Model selection is choosing (a) different types of models or (b) parameter values inside models
= Model selection takes advantage of the validation error in order to decide = ‘pick the best’

Hypothesis Set

H={h}; geH

(set of candidate formulas across models)

= Many different models

(training not on
full data set)

Use validation error to
perform select decisions

= Careful consideration:

= ‘Picked means decided’
hypothesis has already
bias (= contamination)

= Using Dy M times

Final Hypothesis

gm*%f

(test this on unseen data
good, but depends on
availability in practice)

Lecture 6 — Validation & Regularization

DT?"az’n

w.r.t. Dr.,i,)

11 1

gﬂ/f

(out-of-sample

DVal

l(vahdatel unbiased 1
estlmates)

\ Evall 'Ualg valM

(pick ‘best’ = bias) Y(decides model selection)

Hm* E'valm*

D (final real training
(final training on full set, use to get even better

the validation samples too) g out-of-sample)
m *

Exercises — Add Validation — Table & Groups

v" Multi Output Perceptron: ~91,01% (20 Epochs)
v" ANN 2 Hidden Layers: ~95,14% (20 Epochs) — overfit?

VAL_SPLIT | Accuracy Groups

0.0 97,79%
0.1 97,83%
0.2 97,64%
0.3 97,52 %
0.4

Lecture 6 — Validation & Regularization 05 97, 13 %

ANN 2 Hidden 1/5 Validation — MNIST Dataset

= |f there is enough data available one rule of
thumb is to take 1/5 (0.2) 20% of the datasets
for validation only

= Validation data is used to perform model
selection (i.e. parameter / topology decisions)

parameter setup
NB_EPOCH = 20

BATCH_SIZE = 128 "
NB_CLASSES = 10 # number ofytoutputs = number of digits

OPTIMIZER = SGD() # optimfz#tfon technique
VERBOSE = 1 0
I\I_HTnnFI\I 128 & numhor aof !mor.lrmnc T ano hiddon] ovo

VAL_SPLIT = 0.2 # 1/5 for validation rule of thumb

model training

history = model.fit(X_train, Y_train, batch_size=BATCH_SIZE, epochs=NB_EPOCH, verbose=VERBOSE, |validation_split = VAL_SPLIT)

Train on 48000 samples, validate on 12000 samples

The validation split parameter enables an
easy validation approach during the model
training (aka fit)

Expectations should be a higher accuracy
for unseen data since training data is less
biased when using validation for model
decisions (check statistical learning theory)

VALIDATION_SPLIT: Float between 0 and 1

Fraction of the training data to be used as
validation data

The model fit process will set apart this
fraction of the training data and will not
train on it

Intead it will evaluate the loss and any
model metrics on the validation data at the
end of each epoch.

=

~~§
-
- =

ANN 2 Hidden — 1/5 Validation — MNIST Dataset — Output

Epoch 7/20
48000/48000 [==============================] - 1s 18us/step - loss: 0.2967 - acc: 0.9148 - val_loss: 0.2759 - val_acc: 0.9212
Epoch 8/20
48000/48000 [==============================] - 1s 18us/step - loss: 0.2825 - acc: 0.9187 - val_loss: 0.2636 - val_acc: 0.9248
Epoch 9/20
48000/48000 - 1s 18us/step - loss: 0.2702 - acc: 0.9222 - val_loss: 0.2550 - val_acc: 0.9272
Epoch 10/20
48000/48000 [==============================] - 1s 17us/step - loss: 0.2593 - acc: 0.9259 - val_loss: 0.2461 - val_acc: 0.9311
Epoch 11/20
48000/48000 [==============================] - 1s 18us/step - loss: 0.2494 - acc: 0.9283 - val_loss: 0.2367 - val_acc: 0.9338
Epoch 12/20
48000/48000 - 1ls 18us/step - loss: 0.2403 - acc: 0.9309 - val_loss: 0.2304 - val_acc: 0.9348
Epoch 13/20
48000/48000 [==============================] - 1s 18us/step - loss: 0.2319 - acc: 0.9334 - val_loss: 0.2228 - val_acc: 0.9392
Epoch 14/20
48000/48000 [==============================] - 1s 18us/step - loss: 0.2242 - acc: 0.9358 - val_loss: 0.2172 - val_acc: 0.9397
Epoch 15/20
48000/48000 [==============================] - 1s 17us/step - loss: 0.2172 - acc: 0.9381 - val_loss: 0.2105 - val_acc: 0.9418
Epoch 16/20
48000/48000 [==============================] - 1s 18us/step - loss: 0.2103 - acc: 0.9394 - val_loss: 0.2059 - val_acc: 0.9431
Epoch 17/20
48000/48000 [==============================] - 1s 18us/step - loss: 0.2040 - acc: 0.9417 - val_loss: 0.2007 - val_acc: 0.9447
Epoch 18/20
48000/48000 [==============================] - 1s 18us/step - loss: 0.1982 - acc: 0.9432 - val_loss: 0.1949 - val_acc: 0.9473
Epoch 19/20
48000/48000 - 1s 18us/step - loss: 0.1926 - acc: 0.9447 - val_loss: 0.1920 - val_acc: 0.9472
Epoch 20/20
48000/48000 [==============================] - 1s 17us/step - loss: 0.1876 - acc: 0.9464 - val_loss: 0.1866 - val_acc: 0.9499

model evaluation
score = model.evaluate(X_test, Y_test, verbose=VERBOSE)

print("Test score:", score[0])
print('Test accuracy:', score[l])
10000/10000 [==============================] - 0s 2lus/step

Test score: 0.18584023508876563
Test accuracy: 0.9462

Lecture 6 — Validation & Regularization

[Video] Overfitting in Deep Neural Networks

20 hidden neurons

e ® o
@ (-]
@
® ® 8
[] @
] <]
. L J v .
L] . S °
L]
L 5]
L] [] ¢
L]
@

BRI the student is, the more patterns he can memorize. JEAEIEEE
PAPERS

> B W 247/233

[4] Overfitting and Regularization For Deep Learning, YouTube

Lecture 6 — Validation & Regularization

Regularization

O
O 0

Lecture 6 — Validation & Regularization 43 /71

Machine Learning Challenges — Problem of Overfitting

= Overfitting refers to fit the data too well — more than is warranted — thus may misguide the learning
= Qverfitting is not just ‘bad generalization’ - e.g. the VC dimension covers noiseless & noise targets
= Theory of Regularization are approaches against overfitting and prevent it using different methods

= Key problem: noise in the target function leads to overfitting

= Effect: ‘noisy target function” and
its noise misguides the fit in learning

(target)

(overfit)

= There is always ‘some noise’ in the data noise)
noise

= Conseguence: poor target function
(‘distribution’) approximation

= Example: Target functions is second \r
order polynomial (i.e. parabola)
= Using a higher-order polynomial fit (but simple polynomial works good enough)

" (‘over’: here meant as 4th order,
= Perfect fit: low Ein (g) ’ but Iarge Eout (g) a 3" order would be better, 2" best)

Lecture 6 — Validation & Regularization

Problem of Overfitting — Clarifying Terms

= A good model must have low training error (E;,) and low generalization error (E_,)

*= Model overfitting is if a model fits the data too well (E,,) with a poorer generalization error (E_,)
than another model with a higher training error (E,,)

[1] Introduction to Data Mining

= Qverfitting & Errors
= . (g) goes down error
= F (g)goesup

= ‘Bad generalization area‘ ends
= Good to reduce F. (¢g)

(‘generalization error’) Eout (g)

(“training error’)

E,.(9)

>

= ‘Overfitting area’ starts
= Reducing . (g) does not help

(frya: s o Training time
= Reason "fitting the noise’ g4 generalization€ ¢ -> overfitting oCCUrs

= The two general approaches to prevent overfitting are (1) regularization and (2) validation

Lecture 6 — Validation & Regularization

Problem of Overfitting — Model Relationships

" Review ‘overfitting situations’
= When comparing ‘various models® and related to ‘model complexity’
= Different models are used, e.g. 2"¥ and 4t order polynomial
= Same model is used with e.g. two different instances
(e.g. two neural networks but with different parameters)

m |ntuitive So|uti0n A (‘generalization error?) Eout (g)

Error
= Detect when it happens

= ‘Early stopping regularization [\ \ =~ __.- .
term’ to stop the training

model
complexity

= Early stopping method (later)

(“training error’)

£, (9)

>

(‘model complexity measure: the VC analysis was independent | ,/
of a specific target function — bound for all target functions’)

oedoeocooopoovoe

Training time
(‘early stopping’)

= ‘Early stopping’ approach is part of the theory of regularization, but based on validation methods

Lecture 6 — Validation & Regularization

Problem of Overfitting — ANN Model Example

Input Hidden Layers Output

= Two Hidden Layers

= Good accuracy and works well

= Model complexity seem to
match the application & data

" Four Hidden Layers

= Accuracy goes down rror A (‘generalization error’) Eout (g)
“ B (g) goes down
- Eout (g) goesup NN 2 .model

= Significantly more weights to train complexity

= Higher model complexity (‘training error)

oedoeocooopoovoe

Ouput
U4
N I’, E?,’n, (g)
Q@ . >
Training time
V! W AN (‘early stopping’)

Lecture 6 — Validation & Regularization

Exercises - Add more Hidden Layers — Accuracy?

Input Hidden Layers Output

Lecture 6 — Validation & Regularization

Onwrpat

K

MNIST Dataset & Model Summary & Parameters

" Four Hidden Layers

= Each hidden layers has 128 neurons

Hidden Layers

Ot

Layer (type) Output Shape Param #

dense_1 (Demse) (None, 128) loo4se
activation_1 (Activation) (None, 128) o
dense_2 (Dense) (None, 128) 1512
activation_2 (Activation) (None, 128) o
dense_3 (Dense) (None, 128) 1512
activation_3 (Activation) (None, 128) o
dense_4 (Dense) (None, 128) 16512
activation_4 (Activation) (None, 128) o
dense_5 (Dense) (None, 10) 1200
activation_5 (Activation) (None, 10) o

Total params: 151,306
Trainable params: 151,306
Non-trainable params: @

printout a summary of the model to understand model complexity

model . summary ()

Lecture 6 — Validation & Regularization

Exercises - Add more Hidden Layers — 4 Hidden Layers

Epoch 7/20
48000/48000 [==============================] - 1s 24us/step - loss: 0.2614 - acc: 0.9237 - val_loss: 0.2364 - val_acc: 0.9323
Epoch 8/20
48000/48000 [==============================] - 1s 24us/step - loss: 0.2431 - acc: 0.9290 - val_loss: 0.2243 - val_acc: 0.9347
Epoch 9/20
48000/48000 [==============================] - 1s 24us/step - loss: 0.2270 - acc: 0.9339 - val_loss: 0.2158 - val_acc: 0.9377
Epoch 10/20
48000/48000 [==============================] - 1s 24us/step - loss: 0.2130 - acc: 0.9385 - val_loss: 0.1995 - val_acc: 0.9427
Epoch 11/20
48000/48000 [==============================] - 1s 23us/step - loss: 0.2001 - acc: 0.9425 - val_loss: 0.1908 - val_acc: 0.9451
Epoch 12/20
48000/48000 [==============================] - 1s 24us/step - loss: 0.1888 - acc: 0.9445 - val_loss: 0.1866 - val_acc: 0.9464
Epoch 13/20
48000/48000 [==============================] - 1s 24us/step - loss: 0.1783 - acc: 0.9479 - val_loss: 0.1750 - val_acc: 0.9497
Epoch 14/20
48000/48000 [==============================] - 1s 24us/step - loss: 0.1701 - acc: 0.9507 - val_loss: 0.1675 - val_acc: 0.9529
Epoch 15/20
48000/48000 [==============================] - 1s 24us/step - loss: 0.1615 - acc: 0.9533 - val_loss: 0.1631 - val_acc: 0.9537
Epoch 16/20
48000/48000 [==============================] - 1s 24us/step - loss: 0.1539 - acc: 0.9555 - val_loss: 0.1553 - val_acc: 0.9555
Epoch 17/20
48000/48000 [==============================] - 1s 24us/step - loss: 0.1469 - acc: 0.9575 - val_loss: 0.1536 - val_acc: 0.9558
Epoch 18/20
48000/48000 [==============================] - 1s 24us/step - loss: 0.1405 - acc: 0.9590 - val_loss: 0.1505 - val_acc: 0.9560
Epoch 19/20
48000/48000 [==============================] - 1s 24us/step - loss: 0.1351 - acc: 0.9609 - val_loss: 0.1456 - val_acc: 0.9574
Epoch 20/20
48000/48000 [==============================] - 1s 24us/step - loss: 0.1295 - acc: 0.9625 - val_loss: 0.1398 - val_acc: 0.9600

model evaluation
score = model.evaluate(X_test, Y_test, verbose=VERBOSE)

print("Test score:", score[0]) . . .
print('Test accuracy:', score[l]) - Tralnlng daCcuracy should still be
l@@o@/l@@@@ L::::::::::::::::::::::::::::::J - Us 55u5/sfep above the test accuracy - otherwise
Test score: 0.13893915132246912 f. o I

Test accuracy: 0.9571 over Ittlng Starts'

Lecture 6 — Validation & Regularization

Exercises - Add more Hidden Layers — 6 Hidden Layers

Epoch 7/20
48000/48000 [==============================] -
Epoch 8/20
48000/48000 [==============================] -
Epoch 9/20
48000/48000 [::::::::::::::::::::::::::::::] -
Epoch 10/20
48000/48000 [::::::::::::::::::::::::::::::] -
Epoch 11/20
48000/48000 [==============================] -
Epoch 12/20
48000/48000 [==============================] -
Epoch 13/20
48000/48000 [==============================] -
Epoch 14/20
48000/48000 [::::::::::::::::::::::::::::::] -
Epoch 15/20
48000/48000 [==============================] -
Epoch 16/20
48000/48000 [==============================] -
Epoch 17/20
48000/48000 [==============================] -
Epoch 18/20
48000/48000 [::::::::::::::::::::::::::::::] -
Epoch 19/20
48000/48000 [==============================] -
Epoch 20/20
48000/48000 [==============================] -

model evaluation

1s

1s

1s

1s

1s

1s

1s

1s

1s

1s

1s

1s

1s

1s

28us/step
28us/step
28us/step
28us/step
28us/step
28us/step
28us/step
28us/step
28us/step
28us/step
28us/step
27us/step
27us/step

27us/step

score = model.evaluate(X_test, Y_test, verbose=VERBOSE)

print("Test score:", score[0])
print('Test accuracy:', score[l])
l@@o@/l@@@@ L::::::::::::::::::::::::::::::J - (s 34u5/step

Test score: 0.13102742895036937
Test accuracy: 0.9614

Lecture 6 — Validation & Regularization

loss: 0.2567 acc: 0.9231 val_loss: 0.2370 val_acc: 0.9311
loss: 0.2333 acc: 0.9312 val_loss: 0.2229 val_acc: 0.9342
loss: 0.2141 acc: 0.9372 val_loss: 0.1979 val_acc: 0.9429
loss: ©0.1963 acc: 0.9415 val_loss: 0.1860 val_acc: 0.9461
loss: 0.1812 acc: 0.9470 val_loss: 0.1779 val_acc: 0.9487
loss: 0.1693 acc: 0.9496 val_loss: 0.1717 val_acc: 0.9504
loss: 0.1580 acc: 0.9540 val_loss: 0.1651 val_acc: 0.9543
loss: 0.1477 acc: 0.9573 val_loss: 0.1535 val_acc: 0.9552
loss: 0.1381 acc: 0.9594 val_loss: 0.1461 val_acc: 0.9577
loss: 0.1309 acc: 0.9616 val_loss: 0.1427 val_acc: 0.9582
loss: 0.1240 acc: 0.9630 val_loss: 0.1495 val_acc: 0.9573
loss: 0.1170 acc: 0.9663 val_Tloss: 0.1447 val_acc: 0.9563
loss: 0.1114 acc: 0.9674 val_Tloss: 0.1391 val_acc: 0.9587
loss: 0.1053 acc: 0.9696 val_loss: 0.1355 val_acc: 0.9601
|

Training accuracy should still be

above the test accuracy — otherwise

overfitting starts!

Problem of Overfitting — Noise Term Revisited

= ‘(Noisy) Target function’is not a (deterministic) function

= Getting with ‘same x in‘ the ‘same y out’ is not always given in practice

= |dea: Use a ‘target distribution’ —
. , . , Unknown Target Distribution !;{” |}CJ
instead of ‘target function targetfunction f : X — Y plusnoise
(ideal function)
= Fitting some noise in the data
is the basic reason for overfitting (target)
and harms the learning process (overfit)
= Big datasets tend to have more noise (nois
in the data so the overfitting problem . f \
might occur even more intense Va

= ‘Different types of some noise’ in data
= Key to understand overfitting & preventing it

(‘function view’)

= ‘Shift of view": refinement of noise term shift the view

(‘# data view’)
= Learning from data: ‘matching properties of # data’ P Py
W W A

I . ‘# samples’
Lecture 6 — Validation & Regularization

Problem of Overfitting — Stochastic Noise

= Stoachastic noise is a part ‘on top of’ each learnable function
= Noise in the data that can not be captured and thus not modelled by f

= Random noise : aka ‘non-deterministic noise’

= Conventional understanding Unknown Target isrbution o [0
. . Fa . . J
established early in this course target function f : X' —» Y plusnoise

(ideal function)

® Finding a ‘non-existing pattern
in noise not feasible in learning’

" Practice Example

5 ﬁ . (target)
= Random fluctuations and/or - | (overfit)

measurement errors in data (nois
" Fitting a pattern that not exists ‘out-of-sample’ \’f\

= Puts learning progress ‘off-track” and ‘away from f

= Stochastic noise here means noise that can‘t be captured, because it‘s just pure ‘noise as is’
(nothing to look for) — aka no pattern in the data to understand or to learn from

Lecture 6 — Validation & Regularization

Problem of Overfitting — Deterministic Noise

= Part of target function f that H can not capture: f(x) — h*(x)
= Hypothesis set H is limited so best h* can not fully approximate f
= h* approximates f, but fails to pick certain parts of the target f

= ‘Behaves like noise’, existing even if data is ‘stochastic noiseless’

» Different ‘type of noise’ than stochastic noise

= Deterministic noise depends on 7—[(determines how much more can be captured by
. . h*
= E.g.same f, and more sophisticated 7 : noise is smallef '

(stochastic noise remains the same,

nothing can capture it) (f)

= Fixed for a given x , clearly measurable (%)
(stochastic noise may vary for values of x)

(learning deterministic noise is outside the ability to learn for a given
h*)

= Deterministic noise here means noise that can‘t be captured, because it is a limited model
(out of the league of this particular model), e.g. ‘learning with a toddler statistical learning theory’

Lecture 6 — Validation & Regularization

Problem of Overfitting — Impacts on Learning

= The higher the degree of the polynomial (cf. model complexity), the more degrees of
freedom are existing and thus the more capacity exists to overfit the training data

" Understanding deterministic noise & target complexity
" Increasing target complexity increases deterministic noise (at some level)
" |ncreasing the number of data N decreases the deterministic noise

= Finite N case: ‘H tries to fit the noise
= Fitting the noise straightforward (e.g. Perceptron Learning Algorithm)
= Stochastic (in data) and deterministic (simple model) noise will be part of it

= Two ‘solution methods’ for avoiding overfitting

= Regularization: ‘Putting the brakes in learning’, e.g. early stopping
(more theoretical, hence ‘theory of regularization’)

= Validation: ‘Checking the bottom line’, e.g. other hints for out-of-sample
(more practical, methods on data that provides ‘hints‘)

Lecture 6 — Validation & Regularization

High-level Tools — Keras — Regularization Techniques

= Keras is a high-level deep learning library implemented in Python that works on top of
existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano

= The key idea behind the Keras tool is to enable faster experimentation with deep networks
= Created deep learning models run seamlessly on CPU and GPU via low-level frameworks

keras.layers.Dropout (rate, . . .
, = Dropout is randomly setting a fraction
noise shape=None,

seed=None) of input units to 0 at each update
during training time, which helps
prevent overfitting (using parameter
rate)

from keras import regularizers - -
P g = L2 regularizers allow to apply penalties
model.add (Dense (64, input dim=64,

kernel regularizer=regularizers.12(0.01), on Iayer parameter or Iayer activity
activity regularizer=regularizers.11(0.01))) during optimization itself — therefore

the penalties are incorporated in the
loss function during optimization

K e ra S [2] Keras Python Deep Learning Library

Exercises — Underfitting & Add Dropout Regularizer

= Run with 20 Epochs first (not trained enough); then 200 Epochs

®= Training accuracy should be above the test accuracy — otherwise

‘underfitting’

VAL_SPLIT Accuracy Groups

0.0
0.1
0.2
0.3
0.4

Lecture 6 — Validation & Regularization

0.10
0.20
0.25
0.30
0.40

98,0%
97,8%
97,78%
97,47 %
97,23%

ANN — MNIST Dataset — Add Weight Dropout Regularizer

Input Hidden Layers Output

parameter setup

NB_EPOCH = 20

BATCEH NS TZER=IS19 8

NB_CLASSES = 10 # number of outputs = number of digits
OPTIMIZER = SGD() # optimization technique

VERBOSE = 1

N_HIDDEN = 128 # number of neurons in one hidden layer
VAL_SPLIT = 0.2 # 1/5 for validation rule of thumb

IDROPOUT = 0.3 # regularization ‘\

S
S
S
S
s = A Dropout() regularizer randoml|

modeling step \\\ P . 5 8 . .y

2 hidden layers each N_HIDDEN neurons R drOpS with ist dropout prObablllty
model.add (Dense (N_HIDDEN, 'input_shape=(RESHAPED,’{)

model.add (Activation('relu')) S some of the values propagated
Imodel. add (Dropout (DROPOUT)) e~ _ S inside the Dense network hidden

model.add (Dense (N_HIDDEN)) "~~~~ “« . a .

model.add (Activation('relu')) “~~~ NI Iayers Improving accuracy again
| model.add (Dropout (DROPOUT)) | e Sseo “a

model.add (Dense (N6 CLASSES)) -~ =====—___==<_ . | " Ourstandard modelis already
TTeoSe=q modified in the python script but
needs to set the DROPOUT rate

= A Dropout() regularizer randomly
drops with ist dropout probability
some of the values propagated

model.add (Activation('relu')) inside the Dense network hidden

model.add (Dropout (DROPOUT)) layers improving accuracy again

Lecture 6 — Validation & Regularization

MNIST Dataset & Model Summary & Parameters

" Only two Hidden Layers but with Dropout

= Each hidden layers has 128 neurons

Input Hidden Layers OQutput Layer (type) Output Shape Param #

dense 1 (Dense) (Nome, 128) loo4se
activation_1 (Activation) (None, 128) o
dropout_1 (Dropout) (None, 128) Q

dense 2 (Dense) (None, 128) 16512
activation_2 (Activation) (None, 128) o
dropout_2 (Dropout) (None, 128) o
dense 3 (Dense) (None, 10) 1200
activation_3 (Activation) (None, 10) o

Total params: 118,282
Trainable params: 118,282
Non-trainable params: 0

K # printout a summary of the model to understand model complexity
model . summary ()

Lecture 6 — Validation & Regularization

ANN — MNIST — DROPOUT (20 Epochs)

Epoch 7/20
48000/48000 [==============================] - 1ls 22us/step - loss: 0.4616 - acc: 0.8628 - val_loss: 0.3048 - val_acc: 0.9127
Epoch 8/20
48000/48000 [==============================] - 1ls 22us/step - loss: 0.4386 - acc: 0.8688 - val_loss: 0.2896 - val_acc: 0.9172
Epoch 9/20
48000/48000 [==============================] - 1s 22us/step - loss: 0.4181 - acc: 0.8762 - val_loss: 0.2776 - val_acc: 0.9198
Epoch 10/20
48000/48000 [==============================] - 1s 22us/step - loss: 0.3990 - acc: 0.8838 - val_loss: 0.2657 - val_acc: 0.9234
Epoch 11/20
48000/48000 [==============================] - 1s 22us/step - loss: 0.3819 - acc: 0.8876 - val_loss: 0.2551 - val_acc: 0.9258
Epoch 12/20
48000/48000 [==============================] - 1s 22us/step - loss: 0.3688 - acc: 0.8920 - val_loss: 0.2465 - val_acc: 0.9283
Epoch 13/20
48000/48000 [==============================] - 1s 22us/step - loss: 0.3571 - acc: 0.8943 - val_loss: 0.2388 - val_acc: 0.9299
Epoch 14/20
48000/48000 [==============================] - 1ls 22us/step - loss: 0.3466 - acc: 0.8991 - val_loss: 0.2319 - val_acc: 0.9323
Epoch 15/20
48000/48000 [==============================] - 1ls 22us/step - loss: 0.3359 - acc: 0.9015 - val_loss: 0.2261 - val_acc: 0.9339
Epoch 16/20
48000/48000 [==============================] - 1s 22us/step - loss: 0.3244 - acc: 0.9055 - val_loss: 0.2180 - val_acc: 0.9352
Epoch 17/20
48000/48000 [==============================] - 1s 22us/step - loss: 0.3142 - acc: 0.9085 - val_loss: 0.2122 - val_acc: 0.9375
Epoch 18/20
48000/48000 [==============================] - 1s 21lus/step - loss: 0.3103 - acc: 0.9095 - val_loss: 0.2076 - val_acc: 0.9390
Epoch 19/20
48000/48000 [==============================] - 1ls 21lus/step - loss: 0.3019 - acc: 0.9118 - val_loss: 0.2018 - val_acc: 0.9409
Epoch 20/20
48000/48000 [==============================] - 1s 21lus/step - loss: 0.2931 - acc: 0.9132 - val_loss: 0.1974 - val_acc: 0.9419

model evaluation
score = model.evaluate(X_test, Y_test, verbose=VERBOSE)

print("Test score:", score[0]) . .
print('Test accuracy:', score[l]) - RegUIarlzatlon effect nhot yet because
10000/10000 [==============================] - @s 29us/step too little training time (i.e. other

Test score: 0.199445614lh847873

Test accuracy: 0.9404 regularlization ,early stopping‘ here)

Lecture 6 — Validation & Regularization

ANN — MNIST — DROPOUT (200 Epochs)

Epoch 187/200

48000/48000 [==============================] - 1s 2lus/step - loss: 0.0780 - acc: 0.9755 - val_loss: 0.0810 - val_acc: 0.9764
Epoch 188/200

48000/48000 [==============================] - 1ls 2lus/step - loss: 0.0795 - acc: 0.9753 - val_loss: 0.0799 - val_acc: 0.9765
Epoch 189/200

48000/48000 [==============================] - 1s 2lus/step - loss: 0.0774 - acc: 0.9763 - val_loss: 0.0802 - val_acc: 0.9763
Epoch 190/200

48000/48000 [==============================] - 1s 2lus/step - loss: 0.0773 - acc: 0.9770 - val_loss: 0.0799 - val_acc: 0.9758
Epoch 191/2600

48000/48000 [==============================] - 1s 2lus/step - loss: 0.0746 - acc: 0.9771 - val_loss: 0.0804 - val_acc: 0.9762
Epoch 192/200

48000/48000 [==============================] - 1s 2lus/step - loss: 0.0761 - acc: 0.9771 - val_loss: 0.0805 - val_acc: 0.9762
Epoch 193/200

48000/48000 [==============================] - 1s 2lus/step - loss: 0.0750 - acc: 0.9772 - val_loss: 0.0800 - val_acc: 0.9763
Epoch 194/200

48000/48000 [==============================] - 1s 2lus/step - loss: 0.0753 - acc: 0.9766 - val_loss: 0.0804 - val_acc: 0.9767
Epoch 195/200

48000/48000 [==============================] - 1s 21lus/step - loss: 0.0748 - acc: 0.9768 - val_loss: 0.0799 - val_acc: 0.9767
Epoch 196/200

48000/48000 [==============================] - 1s 2lus/step - loss: 0.0755 - acc: 0.9767 - val_loss: 0.0795 - val_acc: 0.9765
Epoch 197/200

48000/48000 [==============================] - 1s 2lus/step - loss: 0.0740 - acc: 0.9771 - val_loss: 0.0799 - val_acc: 0.9767
Epoch 198/200

48000/48000 [==============================] - 1ls 2lus/step - loss: 0.0744 - acc: 0.9769 - val_loss: 0.0792 - val_acc: 0.9772
Epoch 199/200

48000/48000 [==============================] - 1s 2lus/step - loss: 0.0759 - acc: 0.9769 - val_loss: 0.0794 - val_acc: 0.9767
Epoch 200/200

48000/48000 [==============================] - 1s 2lus/step - loss: 0.0730 - acc: 0.9778 - val_loss: 0.0794 - val_acc: 0.9771
model evaluation

e T atayy YRy verboseTVERESSE | w Regularization effect visible by long training
print('Test accuracy:', score[1]) time using dropouts and achieving highest
10000/10000 [==============================] - 0s 27us/step

Test score: 0.07506137332450598 accuracy

Test accuracy: 0.9775 = Note: Convolutional Neural Networks: 99,1 %

Lecture 6 — Validation & Regularization

Epoch 187/200

48000/48000 [==

Epoch 188/200

48000/48000 [==

Epoch 189/200

48000/48000 [==

Epoch 190/200

48000/48000 [==

Epoch 191/200

48000/48000 [==

Epoch 192/200

48000/48000 [==

Epoch 193/200

48000/48000 [==

Epoch 194/200

48000/48000 [==

Epoch 195/200

48000/48000 [==

Epoch 196/200

48000/48000 [==

Epoch 197/200

48000/48000 [==

Epoch 198/200

48000/48000 [==

Epoch 199/200

48000/48000 [==

Epoch 200/200

48000/48000 [==

ANN — MNIST — w/o DROPOUT (200 Epochs)

==========s=s==s==s========z] - ls
===========================:z] - 1s
============z==============z] - 1s
==========s=s==s==s========:z] - ls
===========sssssssssssss===ss] - 1s
==========s=s==s==s========z] - ls
===========ssssssssssss==sss) - 1s
==========s=s==s==s========z] - ls
===========================:z] - 1s
============z==============z] - 1s
==========s===ss=s===s=======] - 1s
============z==============z] - ls
==========s=s==s==s========z] - ls
============z==============z] - ls

model evaluation
score = model.evaluate(X_test, Y_test, verbose=VERBOSE)
print("Test score:'", score[0])

print('Test accuracy:', score[l])

10000/10000 [==

::::::::::::::::::::::::::::] - 0Os

Test score: 0.07599342362476745

Test accuracy:

0.9764

Lecture 6 — Validation & Regularization

20us/step
20us/step
20us/step
19us/step
20us/step
20us/step
20us/step
20us/step
20us/step
20us/step
20us/step
19us/step
19us/step

20us/step

27us/step

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

0.0173 - acc: 0.9973 - val_loss: 0.0888 - val_acc: 0.
0.0170 - acc: 0.9975 - val_loss: 0.0896 - val_acc: 0.
0.0169 - acc: 0.9975 - val_loss: 0.0888 - val_acc: 0.
0.0168 - acc: 0.9973 - val_loss: 0.0880 - val_acc: 0.
0.0165 - acc: 0.9977 - val_loss: 0.0884 - val_acc: 0.
0.0164 - acc: 0.9976 - val_loss: 0.0887 - val_acc: 0.
0.0162 - acc: 0.9976 - val_loss: 0.0888 - val_acc: 0.
0.0160 - acc: 0.9977 - val_loss: 0.0891 - val_acc: 0.
0.0159 - acc: 0.9977 - val_loss: 0.0889 - val_acc: 0.
0.0157 - acc: 0.9979 - val_loss: 0.0886 - val_acc: 0.
0.0155 - acc: 0.9980 - val _loss: 0.0890 - val_acc: 0.
0.0153 - acc: 0.9980 - val_loss: 0.0893 - val_acc: 0.
0.0152 - acc: 0.9980 - val_loss: 0.0892 - val_acc: 0.

0.0151 - acc: 0.9980 - val_loss: 0.0894 - val_acc: 0.

9753

9742

9750

9752

9747

9751

9747

9752

9752

9752

9748

9747

9746

9749

= No regularization method by long
training time for comparison - slight
drop in accuracy since simple dataset

MNIST Dataset & SGD Method — Revisited

= Gradient Descent (GD) uses all the training samples available for a step within a iteration
= Stochastic Gradient Descent (SGD) converges faster: only one training samples used per iteration

b=a—v V f(a) b:a—fy%f(a) b=a—~ dia f(a)

(all slightly different notations, but often used in different literature for same derivative term)

3
(x) - >= 0
d d
Xinext = X1 — 7 (le f(xl) Xopext — Xg — 7 d—Xg f(XZ)
(negative derivative (positive derivative
at point x,) at point x;)

) X1t = X1 — 7 * negative number
@ X2c0t = X2 — 7y * positive number
negative
gradient

positive
gradient

Xy - Xinext Xonext — X; X

[4] Big Data Tips,
Gradient Descent

from keras.optimizers import SGD
OPTIMIZER = SGD() # optimization technique

Lecture 6 — Validation & Regularization

MNIST Dataset & RMSprop & Adam Optimization Methods

= RMSProp is an advanced optimization technique that in many cases enable earlier convergence
= Adam includes a concept of momentum (i.e. veloctity) in addition to the acceleration of SGD

Epoch 7/20
48000/48000 25us/step - loss: 0.1127 - acc: 0.9668 - val_loss: 0.1014 - val_acc: 0.9723
Epoch 8/20
48000/48000 25us/step - loss: 0.1051 - acc: 0.9690 - val_loss: 0.0984 - val_acc: 0.9735
Epoch 9/20
48000/48000 25us/step - loss: 0.0970 - acc: 0.9706 - val_loss: 0.0996 - val_acc: 0.9747
Epoch 10/20
48000/48000 25us/step - loss: 0.0949 - acc: 0.9716 - val_loss: 0.0958 - val_acc: 0.9754
Epoch 11/20
48000/48000 25us/step - loss: 0.0880 - acc: 0.9734 - val_loss: 0.0945 - val_acc: 0.9763
Epoch 12/20
48000/48000 25us/step - loss: 0.0873 - acc: 0.9745 - val_loss: 0.0957 - val_acc: 0.9761
Epoch 13/20
48000/48000 25us/step - loss: 0.0842 - acc: 0.9745 - val_loss: 0.0952 - val_acc: 0.9757
Epoch 14/20
48000/48000 25us/step - loss: 0.0804 - acc: 0.9763 - val_loss: 0.1002 - val_acc: 0.9767
Epoch 15/20
48000/48000 25us/step - loss: 0.0788 - acc: 0.9771 - val_loss: 0.0991 - val_acc: 0.9772
Epoch 16/20
48000/48000 25us/step - loss: 0.0756 - acc: 0.9772 - val_loss: 0.0988 - val_acc: 0.9761
Epoch 17/20
48000/48000 25us/step - loss: 0.0758 - acc: 0.9776 - val_loss: 0.1033 - val_acc: 0.9753
Epoch 18/20
48000/48000 26us/step - loss: 0.0755 - acc: 0.9781 - val_loss: 0.0996 - val_acc: 0.9773
Epoch 19/20
48000/48000 26us/step - loss: 0.0725 - acc: 0.9784 - val_loss: 0.1055 - val_acc: 0.9764
Epoch 20/20

48000/48000

26us/step - loss: 0.0712 - acc: 0.9791 - val_loss: 0.1014 - val_acc: 0.9778

model evaluation
score = model.evaluate(X_test, Y_test, verbose=VERBOSE)

print("Test score:", score[0])
print('Test accuracy:', score[l])
10000/10000 [==============================] - 0s 33us/step

Test score: 0.09596708530617616
Test accuracy: 0.9779

from keras.optimizers import RMSprop

OPTIMIZER = RMSprop() # optimization technique

Lecture 6 — Validation & Regularization

Exercises — Underfitting & Change to Adam

= Run with 20 Epochs With Adam Optimizer

Lecture 6 — Validation & Regularization

[Video] Overfitting in Deep Neural Networks

Causes and Outcomes

8

needed and will add unnecessary complexity

P pl o) 342/ ".3
[3] How good is your fit?, YouTube

Lecture 6 — Validation & Regularization 66 /71

Appendix A — SSH Commands JURECA

O
O 0

Lecture 6 — Validation & Regularization 67/71

Appendix A — SSH Commands JURECA

" salloc --gres=gpu:4 --partition=gpus --nodes=1 --
account=training1904 --time=00:30:00 --
reservation=prace_ml_gpus_tue

* module --force purge;
module use /usr/local/software/jureca/OtherStages
module load Stages/Devel-2018b GCCcore/.7.3.0
module load TensorFlow/1.12.0-GPU-Python-3.6.6
module load Keras/2.2.4-GPU-Python-3.6.6

= srun python PYTHONSCRIPTNAME

Lecture Bibliography

O
O 0

Lecture 6 — Validation & Regularization 69/71

Lecture Bibliography

= [1] An Introduction to Statistical Learning with Applications in R,
Online: http://www-bcf.usc.edu/~gareth/ISL/index.htm|
= [2] Keras Python Deep Learning Library,
Online: https://keras.io/
= [3] YouTube Video, ‘How good is your fit? - Ep. 21 (Deep Learning SIMPLIFIED),
Online: https://www.youtube.com/watch?v=cJA5IHIIL30
= [4] YouTube Video, ‘Overfitting and Regularization For Deep Learning | Two Minute Papers #56’,
Online: https://www.youtube.com/watch?v=6aF9sJrzxaM

= [5] www.big-data.tips, ‘Relu Neural Network’
Online: http://www.big-data.tips/relu-neural-network

= [6] www.big-data.tips, ‘tanh’,
Online: http://www.big-data.tips/tanh

Lecture 6 — Validation & Regularization

Slides Available at http://www.morrisriedel.de/teaching

£ \=lI'I'l3'“H\‘r

. measurement ‘; @ funding
services Policy-based = concepts c tdewce Analysis

forms cross-disciplinary resources E cllmate Computer expertise

oaches
stmctiun
Fusion

g arl:lllk IcomPUtatlonal CDITI utlﬂ m 2 > disciplines agylts g s Enable E
ross- ISGIP inary = ": M d " E
2"« methods's blggg‘,‘,iz?; EER o &
7:% c Ie n c e storage ... Infrastructure =
W I S|mula1éLoD£1Ts SENES technologies
“*EE § . increasing [l via pl’OCGSSII’IgCﬂZ TB
g%g g é_ computlng USIng Euro ean
“ databases % : = Supercomputing wﬂrk,mages
aan.IYSIS DLCL stored Resources analyze Eﬂ Ig % ﬁ S‘-"’CIenEuElflc zﬂﬁ:ﬂl‘l
2 computatlonal . esearCh 385 1% performance

“research ¢ GCJ@MNCEHPC § Juelich § %un s J2t25Ets 2

a-

‘-" @

= W compute utshedl
System Climate modelling AnﬁhH?rdware e %’ﬂ E access :u; hundreds " S:;:E:rsk E
U d t d Technologies garth 3 2o Structure o0
DLCLs "PNcerstanding Stl‘slllIﬂI:tlIEnES 2 directory g S project General 3 ©
Pro'u'lde H.A.Sﬂ Energy systems day o Health R E

=

=

8
[

Lecture 6 — Validation & Regularization

