000861554 001__ 861554
000861554 005__ 20240708132713.0
000861554 0247_ $$2doi$$a10.1016/j.seppur.2019.03.052
000861554 0247_ $$2ISSN$$a1383-5866
000861554 0247_ $$2ISSN$$a1873-3794
000861554 0247_ $$2Handle$$a2128/21905
000861554 0247_ $$2WOS$$aWOS:000466250100011
000861554 037__ $$aFZJ-2019-02005
000861554 041__ $$aEnglish
000861554 082__ $$a540
000861554 1001_ $$0P:(DE-Juel1)129660$$aSchulze-Küppers, F.$$b0$$eCorresponding author
000861554 245__ $$aDesign and fabrication of large-sized planar oxygen transport membrane components for direct integration in oxy-combustion processes
000861554 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000861554 3367_ $$2DRIVER$$aarticle
000861554 3367_ $$2DataCite$$aOutput Types/Journal article
000861554 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1553606771_27369
000861554 3367_ $$2BibTeX$$aARTICLE
000861554 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861554 3367_ $$00$$2EndNote$$aJournal Article
000861554 520__ $$aMembrane-based oxy-combustion is a promising technology for energy efficient combustion of carbon-containing fuels with the simultaneous opportunity to capture CO2 from the resulting exhaust gas. However, oxy-combustion conditions result in special demands on the design of the ceramic membrane components due to the high pressure and temperature applied. Therefore, we have developed a planar membrane design for 4-end operation using asymmetric membranes of La0.6Sr0.4Co0.2Fe0.8O3−δ. FEM and CFD simulations have been performed in order to develop an internal channel structure that allows withstanding pressures of 5 bar on the feed side while achieving the desired O2 concentrations of 27% in the sweep gas, i.e. CO2, and an oxygen recovery rate from the feed gas of 86% at the same time.Due to the symmetric design of the membrane components, they are scalable and adaptable in size. This design has been realized in a process chain from powder to the final component consisting of thin 20 µm Membrane layer, support with 38% porosity, an inner channelled architecture and a thin (3–5 µm) porous activation layer. Particular emphasis was laid on scalable manufacturing processes in order to ensure transferability to industrial scale. The process chain is also applicable to other membrane materials suitable for any application of interest. Finally, the reproducible processing was successfully demonstrated by the fabrication of membrane components in lengths of 100 mm and widths of 70 mm.
000861554 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000861554 536__ $$0G:(EU-Grant)608524$$aGREEN-CC - Graded Membranes for Energy Efficient New Generation Carbon Capture Process (608524)$$c608524$$fFP7-ENERGY-2013-1$$x1
000861554 588__ $$aDataset connected to CrossRef
000861554 7001_ $$0P:(DE-HGF)0$$aDrago, F.$$b1
000861554 7001_ $$0P:(DE-HGF)0$$aFerravante, L.$$b2
000861554 7001_ $$0P:(DE-HGF)0$$aHerzog, S.$$b3
000861554 7001_ $$0P:(DE-Juel1)129587$$aBaumann, S.$$b4
000861554 7001_ $$0P:(DE-HGF)0$$aPinacci, P.$$b5
000861554 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, Wilhelm Albert$$b6$$ufzj
000861554 770__ $$aInorganic Membranes
000861554 773__ $$0PERI:(DE-600)2022535-0$$a10.1016/j.seppur.2019.03.052$$gVol. 220, p. 89 - 101$$p89 - 101$$tSeparation and purification technology$$v220$$x1383-5866$$y2019
000861554 8564_ $$uhttps://juser.fz-juelich.de/record/861554/files/JUSER%20EINTRAG%20revised%20manuscript.pdf$$yPublished on 2019-03-19. Available in OpenAccess from 2021-03-19.
000861554 8564_ $$uhttps://juser.fz-juelich.de/record/861554/files/JUSER%20EINTRAG%20revised%20manuscript.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-03-19. Available in OpenAccess from 2021-03-19.
000861554 909CO $$ooai:juser.fz-juelich.de:861554$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000861554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129660$$aForschungszentrum Jülich$$b0$$kFZJ
000861554 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a RSE S.p.A., Via Rubattino 54, 20134 Milan, Italy$$b1
000861554 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a RSE S.p.A., Via Rubattino 54, 20134 Milan, Italy$$b2
000861554 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000861554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich$$b4$$kFZJ
000861554 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a RSE S.p.A., Via Rubattino 54, 20134 Milan, Italy$$b5
000861554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129637$$aForschungszentrum Jülich$$b6$$kFZJ
000861554 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000861554 9141_ $$y2019
000861554 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861554 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000861554 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000861554 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000861554 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSEP PURIF TECHNOL : 2017
000861554 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861554 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861554 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000861554 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000861554 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861554 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861554 920__ $$lyes
000861554 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000861554 9801_ $$aFullTexts
000861554 980__ $$ajournal
000861554 980__ $$aVDB
000861554 980__ $$aUNRESTRICTED
000861554 980__ $$aI:(DE-Juel1)IEK-1-20101013
000861554 981__ $$aI:(DE-Juel1)IMD-2-20101013