000861555 001__ 861555
000861555 005__ 20240711113610.0
000861555 0247_ $$2doi$$a10.1016/j.nme.2019.01.004
000861555 0247_ $$2Handle$$a2128/21885
000861555 0247_ $$2WOS$$aWOS:000460107500041
000861555 037__ $$aFZJ-2019-02006
000861555 082__ $$a624
000861555 1001_ $$0P:(DE-Juel1)2620$$aKirschner, A.$$b0$$eCorresponding author
000861555 245__ $$aModelling of tungsten erosion and deposition in the divertor of JET-ILW in comparison to experimental findings
000861555 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2019
000861555 3367_ $$2DRIVER$$aarticle
000861555 3367_ $$2DataCite$$aOutput Types/Journal article
000861555 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1553181638_3480
000861555 3367_ $$2BibTeX$$aARTICLE
000861555 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861555 3367_ $$00$$2EndNote$$aJournal Article
000861555 520__ $$aThe erosion, transport and deposition of tungsten in the outer divertor of JET-ILW has been studied for an H-Mode discharge with low frequency ELMs. For this specific case with an inter-ELM electron temperature at the strike point of about 20 eV, tungsten sputtering between ELMs is almost exclusively due to beryllium impurity and self-sputtering. However, during ELMs tungsten sputtering due to deuterium becomes important and even dominates. The amount of simulated local deposition of tungsten relative to the amount of sputtered tungsten in between ELMs is very high and reaches values of 99% for an electron density of 5E13 cm−3 at the strike point and electron temperatures between 10 and 30 eV. Smaller deposition values are simulated with reduced electron density. The direction of the B-field significantly influences the local deposition and leads to a reduction if the E × B drift directs towards the scrape-off-layer. Also, the thermal force can reduce the tungsten deposition, however, an ion temperature gradient of about 0.1 eV/mm or larger is needed for a significant effect. The tungsten deposition simulated during ELMs reaches values of about 98% assuming ELM parameters according to free-streaming model. The measured WI emission profiles in between and within ELMs have been reproduced by the simulation. The contribution to the overall net tungsten erosion during ELMs is about 5 times larger than the one in between ELMs for the studied case. However, this is due to the rather low electron temperature in between ELMs, which leads to deuterium impact energies below the sputtering threshold for tungsten.
000861555 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000861555 588__ $$aDataset connected to CrossRef
000861555 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b1
000861555 7001_ $$0P:(DE-Juel1)130040$$aHuber, Alexander$$b2
000861555 7001_ $$0P:(DE-HGF)0$$aMeigs, A.$$b3
000861555 7001_ $$0P:(DE-Juel1)130158$$aSergienko, G.$$b4
000861555 7001_ $$0P:(DE-HGF)0$$aTskhakaya, D.$$b5
000861555 7001_ $$0P:(DE-Juel1)7884$$aBorodin, D.$$b6
000861555 7001_ $$0P:(DE-Juel1)171218$$aGroth, M.$$b7$$ufzj
000861555 7001_ $$0P:(DE-Juel1)130043$$aJachmich, S.$$b8$$ufzj
000861555 7001_ $$0P:(DE-Juel1)165905$$aRomazanov, J.$$b9
000861555 7001_ $$0P:(DE-Juel1)5247$$aWiesen, S.$$b10
000861555 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch.$$b11
000861555 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2019.01.004$$gVol. 18, p. 239 - 244$$p239 - 244$$tNuclear materials and energy$$v18$$x2352-1791$$y2019
000861555 8564_ $$uhttps://juser.fz-juelich.de/record/861555/files/1-s2.0-S2352179118302333-main.pdf$$yOpenAccess
000861555 8564_ $$uhttps://juser.fz-juelich.de/record/861555/files/1-s2.0-S2352179118302333-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000861555 909CO $$ooai:juser.fz-juelich.de:861555$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000861555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2620$$aForschungszentrum Jülich$$b0$$kFZJ
000861555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b1$$kFZJ
000861555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130040$$aForschungszentrum Jülich$$b2$$kFZJ
000861555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130158$$aForschungszentrum Jülich$$b4$$kFZJ
000861555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7884$$aForschungszentrum Jülich$$b6$$kFZJ
000861555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171218$$aForschungszentrum Jülich$$b7$$kFZJ
000861555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130043$$aForschungszentrum Jülich$$b8$$kFZJ
000861555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165905$$aForschungszentrum Jülich$$b9$$kFZJ
000861555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5247$$aForschungszentrum Jülich$$b10$$kFZJ
000861555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b11$$kFZJ
000861555 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000861555 9141_ $$y2019
000861555 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861555 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000861555 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000861555 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000861555 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000861555 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861555 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000861555 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000861555 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861555 920__ $$lyes
000861555 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000861555 9801_ $$aFullTexts
000861555 980__ $$ajournal
000861555 980__ $$aVDB
000861555 980__ $$aUNRESTRICTED
000861555 980__ $$aI:(DE-Juel1)IEK-4-20101013
000861555 981__ $$aI:(DE-Juel1)IFN-1-20101013