000861557 001__ 861557 000861557 005__ 20210130000848.0 000861557 0247_ $$2doi$$a10.1103/PhysRevApplied.10.054026 000861557 0247_ $$2Handle$$a2128/21886 000861557 0247_ $$2WOS$$aWOS:000449792500004 000861557 0247_ $$2altmetric$$aaltmetric:31576752 000861557 037__ $$aFZJ-2019-02008 000861557 082__ $$a530 000861557 1001_ $$0P:(DE-Juel1)172033$$aBotzem, Tim$$b0$$eCorresponding author 000861557 245__ $$aTuning Methods for Semiconductor Spin Qubits 000861557 260__ $$aCollege Park, Md. [u.a.]$$bAmerican Physical Society$$c2018 000861557 3367_ $$2DRIVER$$aarticle 000861557 3367_ $$2DataCite$$aOutput Types/Journal article 000861557 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1553235587_16453 000861557 3367_ $$2BibTeX$$aARTICLE 000861557 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000861557 3367_ $$00$$2EndNote$$aJournal Article 000861557 520__ $$aWe present efficient methods to reliably characterize and tune gate-defined semiconductor spin qubits. Our methods are developed for double quantum dots in GaAs heterostructures, but they can easily be adapted to other quantum-dot-based qubit systems. These tuning procedures include the characterization of the interdot tunnel coupling, the tunnel coupling to the surrounding leads, and the identification of various fast initialization points for the operation of the qubit. Since semiconductor-based spin qubits are compatible with standard semiconductor process technology and hence promise good prospects of scalability, the challenge of efficiently tuning the dot’s parameters will only grow in the near future, once the multiqubit stage is reached. With the anticipation of being used as the basis for future automated tuning protocols, all measurements presented here are fast-to-execute and easy-to-analyze characterization methods. They result in quantitative measures of the relevant qubit parameters within a couple of seconds and require almost no human interference. 000861557 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0 000861557 588__ $$aDataset connected to CrossRef 000861557 7001_ $$0P:(DE-HGF)0$$aShulman, Michael D.$$b1 000861557 7001_ $$0P:(DE-HGF)0$$aFoletti, Sandra$$b2 000861557 7001_ $$0P:(DE-HGF)0$$aHarvey, Shannon P.$$b3 000861557 7001_ $$0P:(DE-HGF)0$$aDial, Oliver E.$$b4 000861557 7001_ $$0P:(DE-HGF)0$$aBethke, Patrick$$b5 000861557 7001_ $$0P:(DE-HGF)0$$aCerfontaine, Pascal$$b6 000861557 7001_ $$0P:(DE-HGF)0$$aMcNeil, Robert P. G.$$b7 000861557 7001_ $$0P:(DE-HGF)0$$aMahalu, Diana$$b8 000861557 7001_ $$0P:(DE-HGF)0$$aUmansky, Vladimir$$b9 000861557 7001_ $$0P:(DE-HGF)0$$aLudwig, Arne$$b10 000861557 7001_ $$0P:(DE-HGF)0$$aWieck, Andreas$$b11 000861557 7001_ $$0P:(DE-HGF)0$$aSchuh, Dieter$$b12 000861557 7001_ $$0P:(DE-HGF)0$$aBougeard, Dominique$$b13 000861557 7001_ $$0P:(DE-HGF)0$$aYacoby, Amir$$b14 000861557 7001_ $$0P:(DE-Juel1)172019$$aBluhm, Hendrik$$b15$$eCorresponding author 000861557 773__ $$0PERI:(DE-600)2760310-6$$a10.1103/PhysRevApplied.10.054026$$gVol. 10, no. 5, p. 054026$$n5$$p054026$$tPhysical review applied$$v10$$x2331-7019$$y2018 000861557 8564_ $$uhttps://juser.fz-juelich.de/record/861557/files/PhysRevApplied.10.054026.pdf$$yOpenAccess 000861557 8564_ $$uhttps://juser.fz-juelich.de/record/861557/files/PhysRevApplied.10.054026.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000861557 909CO $$ooai:juser.fz-juelich.de:861557$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000861557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172033$$aForschungszentrum Jülich$$b0$$kFZJ 000861557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172019$$aForschungszentrum Jülich$$b15$$kFZJ 000861557 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0 000861557 9141_ $$y2019 000861557 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000861557 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement 000861557 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV APPL : 2017 000861557 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000861557 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000861557 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000861557 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000861557 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000861557 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000861557 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000861557 920__ $$lyes 000861557 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0 000861557 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1 000861557 980__ $$ajournal 000861557 980__ $$aVDB 000861557 980__ $$aUNRESTRICTED 000861557 980__ $$aI:(DE-Juel1)PGI-11-20170113 000861557 980__ $$aI:(DE-82)080009_20140620 000861557 9801_ $$aFullTexts