001 | 861557 | ||
005 | 20210130000848.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevApplied.10.054026 |2 doi |
024 | 7 | _ | |a 2128/21886 |2 Handle |
024 | 7 | _ | |a WOS:000449792500004 |2 WOS |
024 | 7 | _ | |a altmetric:31576752 |2 altmetric |
037 | _ | _ | |a FZJ-2019-02008 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Botzem, Tim |0 P:(DE-Juel1)172033 |b 0 |e Corresponding author |
245 | _ | _ | |a Tuning Methods for Semiconductor Spin Qubits |
260 | _ | _ | |a College Park, Md. [u.a.] |c 2018 |b American Physical Society |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1553235587_16453 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We present efficient methods to reliably characterize and tune gate-defined semiconductor spin qubits. Our methods are developed for double quantum dots in GaAs heterostructures, but they can easily be adapted to other quantum-dot-based qubit systems. These tuning procedures include the characterization of the interdot tunnel coupling, the tunnel coupling to the surrounding leads, and the identification of various fast initialization points for the operation of the qubit. Since semiconductor-based spin qubits are compatible with standard semiconductor process technology and hence promise good prospects of scalability, the challenge of efficiently tuning the dot’s parameters will only grow in the near future, once the multiqubit stage is reached. With the anticipation of being used as the basis for future automated tuning protocols, all measurements presented here are fast-to-execute and easy-to-analyze characterization methods. They result in quantitative measures of the relevant qubit parameters within a couple of seconds and require almost no human interference. |
536 | _ | _ | |a 144 - Controlling Collective States (POF3-144) |0 G:(DE-HGF)POF3-144 |c POF3-144 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Shulman, Michael D. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Foletti, Sandra |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Harvey, Shannon P. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Dial, Oliver E. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Bethke, Patrick |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Cerfontaine, Pascal |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a McNeil, Robert P. G. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Mahalu, Diana |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Umansky, Vladimir |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Ludwig, Arne |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Wieck, Andreas |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Schuh, Dieter |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Bougeard, Dominique |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Yacoby, Amir |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Bluhm, Hendrik |0 P:(DE-Juel1)172019 |b 15 |e Corresponding author |
773 | _ | _ | |a 10.1103/PhysRevApplied.10.054026 |g Vol. 10, no. 5, p. 054026 |0 PERI:(DE-600)2760310-6 |n 5 |p 054026 |t Physical review applied |v 10 |y 2018 |x 2331-7019 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/861557/files/PhysRevApplied.10.054026.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/861557/files/PhysRevApplied.10.054026.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:861557 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)172033 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 15 |6 P:(DE-Juel1)172019 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-144 |2 G:(DE-HGF)POF3-100 |v Controlling Collective States |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV APPL : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-11-20170113 |k PGI-11 |l JARA Institut Quanteninformation |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-11-20170113 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|