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We present efficient methods to reliably characterize and tune gate-defined semiconductor spin qubits.

Our methods are developed for double quantum dots in GaAs heterostructures, but they can easily be

adapted to other quantum-dot-based qubit systems. These tuning procedures include the characterization

of the interdot tunnel coupling, the tunnel coupling to the surrounding leads, and the identification of

various fast initialization points for the operation of the qubit. Since semiconductor-based spin qubits

are compatible with standard semiconductor process technology and hence promise good prospects of

scalability, the challenge of efficiently tuning the dot’s parameters will only grow in the near future, once

the multiqubit stage is reached. With the anticipation of being used as the basis for future automated

tuning protocols, all measurements presented here are fast-to-execute and easy-to-analyze characterization

methods. They result in quantitative measures of the relevant qubit parameters within a couple of seconds

and require almost no human interference.

DOI: 10.1103/PhysRevApplied.10.054026

I. INTRODUCTION

The recent developments in semiconductor-based spin

qubits show their great potential as building blocks of

a quantum computer and demonstrate their promise for

scalable architectures [1–9]. However, with the increasing

number of physical qubits, challenges like device architec-

ture [10–12], long-range coupling [13–17], error correc-

tion [18,19], decoherence due to charge noise [20,21], and

scalable implementation [22,23] of the control electronics

[24,25] will play an increasingly important role. One fur-

ther obstacle, which has not received much attention to

date, is the tuning of the qubit devices. Especially in the

case of gate-defined quantum dots, even tuning a double

quantum dot is a nontrivial task, as each quantum dot com-

prises at least three electrostatic gate electrodes, each of

which influences the number of electrons in the dot, the

tunnel coupling to the adjacent lead, and the interdot tun-

nel coupling. The current practice of manually tuning the

qubits is a relatively time-consuming procedure. While it

can be simplified with improved gate designs that feature

*t.botzem@unsw.edu.au

little cross talk between different target parameters [26],

manual tuning is inherently impractical for scale-up and

applications.

In this work, we present tuning and characterization

methods for double quantum dots that have evolved over

the course of the experiments on two-electron spin qubits

presented in Refs. [1], [27], and [21,28–32]. These proce-

dures are used to tune up one and two two-electron spin

qubits, but they also involve aspects needed for multiqubit

devices.

Complementary to Ref. [33], which shows a computer-

automated scheme for the coarse tuning of quantum dots

into the single-electron regime, we focus here on the fine-

tuning of the spin qubit once the single-electron regime

is reached. In addition to the tuning of the interdot tunnel

couplings [34,35], the fine-tuning includes the adjustment

and the characterization of the tunnel couplings to the

adjacent leads and the identification of the energy tran-

sitions relevant for the qubit functionality. We exploit

high-bandwidth readout by radiofrequency (rf) reflectom-

etry [36,37] and present fast, easy-to-analyze, quantitative

measurements to characterize semiconductor spin qubits.

Contrary to the relatively slow tuning based on direct
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current (dc) electron transport through the dot [38], all

scans necessary for characterizing a device in our scheme

can be performed within a few seconds by using pulsed

gate measurements and charge sensing with rf readout. As

the tuning parameters of interest are obtained directly as

fit parameters and require no human intervention, these

analysis methods are well suited as a basis for the full

automation of the complete tuning procedure. Such an

automation will be crucial for the scalability of any qubit

that requires tuning.

Importantly, while all measurements presented here

were performed on GaAs double quantum dots operated

as two-electron spin qubits, the procedures can easily be

adapted to other quantum-dot-like qubit systems. In partic-

ular, most aspects are not specific to GaAs or two-electron

spin qubits, as devices containing two exchange cou-

pled single-spin qubits [39,40] are subject to very similar

requirements. Moreover, our procedures are also adaptable

to devices with a larger number of dots or qubits, which

will also require the adjustment of interdot and dot-lead

tunnel couplings.

The outline of this paper is as follows: In Sec. II,

we introduce the device layout of the two-electron spin

qubit in GaAs and explain the basics of the experimental

setup including the rf-reflectometry circuit. In Sec. III, we

present our methods to quantitatively characterize and fine-

tune the qubit. We first motivate the use of virtual gates,

a linear combination of several gates that allows changing

specific quantum dot parameters individually. We continue

by describing the characterization of the interdot tunnel

coupling tc and the tunnel couplings to the electron reser-

voirs, which must be tuned to certain values for the proper

operation of the qubit.

Additionally, we provide routines for locating fast-

reload points used to initialize the qubit in different states

and the location of the energy transitions that allow us to

set up a hardware feedback loop to polarize and stabilize

the nuclear spin bath in the GaAs host material [28].

II. DEVICE LAYOUT AND EXPERIMENTAL

SETUP

All data shown in this paper are obtained from the qubit

in Refs. [32] and [1], depicted in Fig. 1. This is a so-called

singlet-triplet spin qubit (ST0 qubit), embedded in a GaAs

double quantum dot formed by electrostatic gates (the gray

and blue features in Fig. 1) on top of a two-dimensional

electron gas (2DEG). The ST0 qubit is encoded in the

mz = 0 subspace of the regime where each dot is occu-

pied by a single electron, i.e., the subspace spanned

by S = (|↑↓〉 − |↓↑〉) /
√

2 and T0 = (|↑↓〉 + |↓↑〉) /
√

2

[41], where ↑ or ↓ describes the spin state of the electron in

one of the dots. This type of qubit can be fully manipulated

using only electric pulses.
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FIG. 1. False color SEM image of a device similar to the one

used in this work, including the contacting scheme. Applying

static voltages to the gray gates confines two electrons in a double

dot potential in the 2DEG of a GaAs/Al0.31Ga0.69As heterostruc-

ture. The blue gates, RFX and RFY, are used exclusively for fast

manipulation. The dot on the left is used for charge sensing of

the double dot and is embedded in an impedance-matching cir-

cuit as the resistive element. The crossed boxes represent Ohmic

contacts to the leads.

In more detail, the gates depicted in gray in Fig. 1 repre-

sent dc static gates used to define the quantum dots and to

tune them into the single-electron regime. They are heavily

filtered and fed with voltages of order 1 V. The broad side

gates S1 and S2 adjust the number of electrons in quan-

tum dots 1 and 2. The barrier gates B1 and B2 control the

tunnel coupling to the leads and the interdot coupling is

controlled by the “nose” and “tail” gates, N12 and T12.

Two additional control gates (named RFX and RFY and

depicted in blue in Fig. 1) are used for qubit manipulation

by applying millivolt-scale signals. They are dc-coupled

to an arbitrary waveform generator Tektronix AWG5014C

operated at 1 GS/s and attenuated by 33 dB at various cryo-

genic stages to reduce thermal noise from room tempera-

ture. Using dedicated static and control gates eliminates

the need for bias tees and the resulting pulse imperfections

[28] and ensures a nearly flat frequency response of the

control gates from dc to a few hundred megahertz, at the

cost of one additional gate electrode.

The double dot is capacitively coupled to a third dot

(named the sensing dot), which is used as a charge detector.

Its conductance depends on the local electrostatic land-

scape, which allows reading out the charge state of the

double dot [42]. The spin state of the double dot can be

probed through the sensing dot by spin-to-charge conver-

sion based on Pauli spin blockade [43,44]. The sensing dot

is embedded as a resistive component in an impedance-

matching circuit, so that the conductance through the dot
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can be monitored using rf reflectometry [36,37,45] at a

local oscillator frequency of approximately 230 MHz and

a bandwidth of 20 MHz. We employ a setup similar to that

of Ref. [37], with the addition of a cryogenic circulator at

base temperature. The demodulated signal Vrf is a function

of the conductance of the sensing dot and is recorded using

an Alazar ATS9440 digitizer board.

We typically use a hardware sample rate of 100 MS/s,

which we downsample on the fly at the full data rate

to 250 kHz using a multithreaded, high-throughput, C++-

based driver for the Alazar card. This downsampled rate

arises from a typical length of 4 µs for experiments, which

usually comprises a 2.5-µs-long measurement window

during which we power the rf circuit. Effects of 1/f -like

noise are eliminated from the data by changing the sweep-

pulse parameter after each cycle and then averaging over

many repetitions of the parameter sweep to elude slow

drifts in the sensor or gate voltage configuration. For a typ-

ical tuning data set, the sweep comprises 100 parameter

values and it is repeated 1536 times for a total mea-

surement time of 1536 × 100 × 4 µs ≈ 600 ms and then

averaged again over 1–5 repetitions, if necessary. These

acquisition parameters are not yet optimized for speed and

we expect that a speed-up of at least a factor of 10 is pos-

sible while still maintaining an adequate accuracy of the

extracted parameters.

III. FINE TUNING OF THE QUBIT

This section describes in detail the fine-tuning of a ST0

qubit after the double dot has been tuned in the two-

electron regime, either around (2,0)-(1,1) or the (0,2)-(1,1)

charge transition [see Fig. 2(a)]. The procedure for the

coarse-tuning to this charge regime is described in the

Appendix. All measurements presented in this section are

performed using rf reflectometry on the sensing dot.
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FIG. 2. (a) Charge stability diagram of the double dot measured

using rf reflectometry. Different values of Vrf correspond to dif-

ferent charge ground states. (b) Fit of the stability diagram using

the model described in Sec. III A. Circles and lines mark the auto-

matically detected triple points and the positions of the charge

transition. The gray arrow represents the direction of the detun-

ing ǫ. In both figures, we subtracted a background value due to

the direct influence of the charge sensor extracted from the fit.

A. Locating the triple points

The operation of a qubit requires the accurate character-

ization of the charge stability diagram in the RFX-RFY

plane (here and in the following, RFX and RFY refer

to the voltage applied to the respective gate). In other

words, it is necessary to know the exact position of the

triple points—the points in the charge stability diagram

where three charge states are energetically degenerate

[e.g., (1,0); (1,1); and (2,0)]—and of the so-called lead

transitions—the transitions between different charge states

of the double dot that involve electron exchange with one

of the reservoirs [e.g., the transition (1, 0) ↔ (1, 1)]. We

present instead an automated routine, based on a measure-

ment of the charge stability diagram near the (2,0)-(1,1)

transition, followed by the fit to a simple model that allows

the extraction of the relevant parameters.
The fitting model consists of two parts. The first part is

a two-site Hubbard Hamiltonian without spin:

H =









E1,0 + v1 0 0 0

0 E1,1 + v1 + v2 tc 0

0 tc E2,0 + 2v1 0

0 0 0 E2,1 + 2v1 + v2









in the charge basis j ∈ {(1, 0), (1, 1), (2, 0), (2, 1)}. Here,

Ej are the basis state energies at RFX = RFY = 0, tc is

the interdot tunnel coupling, and vi the on-site potential,

which can be calculated knowing the voltages applied to

the rf gates Vi and their respective lever arms, including

cross-capacitances. The index i indicates RFX and RFY,

respectively (V1 = RFX and V2 = RFY). The spectrum of

this Hamiltonian can be calculated analytically to find the

charge configuration of each eigenstate at each point in the

RFX-RFY plane. Assuming that the occupation probability

of each state corresponds to thermal equilibrium, we obtain

a vector p, describing the occupation probabilities of the

various charge basis states.

Since measurements like those presented in Fig. 2 are

slow compared to the system dynamics, we can use the

ground-state charge population vector p as input in a linear

fitting model for the charge sensor:

S = p · s + sct,1V1 + sct,2V2 + S0, (1)

where S is the charge sensor output, s is a vector that

contains the sensor output for each charge eigenstate, sct,i

account for direct cross talk between the rf gates and the

sensor, and S0 is an offset. The components of s, as well

as sct,i and S0, the lever arms, the cross-capacitances, the

energies Ei, and the interdot tunnel coupling tc, are treated

as fitting parameters, while the input parameters for the fit

are the 2D sensor output data and the voltages Vi applied to

the rf gates. A typical measurement and a fit to the data are

presented in Fig. 2. From the fit parameters, the position

of the triple points and the location of the lead transi-

tions in the RFX-RFY plane are extracted. These values
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TABLE I. Typical values for the coefficients of the virtual gates. The values correspond to the ratio of change in physical gate

voltages to that of the virtual gate.

Virtual gate

LeadY LeadX T N X Y

Physical gate B1 1 0 0 0 0 0

S1 −0.76 0.5 −0.52 −0.5 1.5 −2.1

T12 0 0 1 0 0 0

N12 0 0 0 1 0 0

B2 0 1 0 0 0 0

S2 0.26 −1.1 −1.25 −0.5 −3.68 1.03

are used as reference points in all of the following tuning

procedures and to recalibrate the setup after a charge rear-

rangement. Furthermore, the direction orthogonal to the

segment where the charge states (2,0) and (1,1) are ener-

getically degenerate defines the so-called detuning axis ǫ

[gray arrow in Fig. 2(b)]. In the following, we fix ǫ = 0 to

correspond to the measurement point defined in Sec. III E.

B. Setting up virtual gates

The first step of the tuning procedure is the coarse tun-

ing of the double dot in the two-electron regime, i.e., the

identification of the (2,0)-(1,1) [or the (0,2)-(1,1)] charge

transition. This step can be based on standard quantum

transport measurements (see the Appendix) or charge sens-

ing, and was automated in Ref. [33]. Once the double dot

has been tuned in the appropriate charge regime, the fine-

tuning of the qubit can start. For doing so, it is convenient

to switch to virtual gates. These virtual gates are given by a

linear combination of three physical gates (see Table I) that

allow tuning the parameters of the double dot while leav-

ing the charge stability diagram in the RFX and RFY plane

unaffected. Virtual gates are chosen such that each of them

affects primarily one specific dot parameter: gates LeadY

and LeadX change the tunnel coupling to the respective

lead, while the tunnel coupling between the dots is manipu-

lated by the virtual gates T and N . In each case, in addition

to changing the physical gate that mostly influences the

desired parameter, a compensating voltage is applied to the

S1 and S2 gates to cancel out any cross-capacitance effect.

Virtual gates X and Y depend only on S1 and S2 and are

used to readjust the position of features in the charge sta-

bility diagram in the case of imperfect compensation from

the virtual gates or charge rearrangements.

To obtain the virtual gate coefficients shown in Table I,

we focus on the lead transitions and measure how their

position in the RFX-RFY plane is shifted by the potential

applied on a certain gate. To do so, we apply two different

voltages (differing typically by 2–6 mV) to each of the dc

gates in turn. For each set of voltages, we measure the dot’s

response while sweeping RFX or RFY across both lead

transitions, as shown in Fig. 3(a) for the case of the Y lead.

In these curves, the two plateaus correspond to two differ-

ent charge states of the double dot. The labels close to each

curve indicate the gate on which the potential is changed.

To obtain the influence of that gate, the value of RFX (or

RFY) at which the transition between the two plateaus

occurs is extracted using a fit model corresponding to a

Fermi distribution [46],

Vrf(v) = Vrf,0 + δVrfv −
1

2
A

[

1 + tanh

(

v − vlead

w

)]

.

(2)

Here, v is the voltage on either the RFX or RFY sweeping

gate, Vrf,0 represents the background value of the charge-

sensing signal Vrf, the linear term δVrfv accounts for the

direct influence of the sweeping gate on the conductance

through the sensor (assumed to be linear), the third term

accounts for the excess charge once an electron tunnels

into or out of the quantum dot and includes a finite elec-

tron temperature and lever arm via w, while vlead defines

the position of the lead transition, and finally A is the con-

trast of the transition. We use Vrf,0, δVrf, A, w, and vlead as

fit parameters. The values of vlead extracted from these

fits depend on the voltage applied to all the dc gates and

are used to construct a 2 × 6 cross-capacitance matrix.

Virtual-gate coefficients are then extracted by inverting the

appropriate submatrices of the cross-capacitance matrix.

Typical values are given in Table I. The virtual-gate coef-

ficients can be further fine-tuned by applying the same

principle to study the influence of the dc gates on the loca-

tion of the triple points of the (2,0)-(1,1) charge transition

or on the position of the ST+ anticrossing.

A similar concept is used in Ref. [2] to perform orthog-

onal charge stability diagrams in a three-electron quantum

dot, and in Refs. [29] and [47].

C. Tunnel coupling to the leads

The next step is the tuning of the tunnel coupling to leads

X and Y (Ohmic contacts next to the rf gates; see Fig. 1),

which act as electron reservoirs. The coupling to these
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FIG. 3. (a) To determine the influence of the various dc gates

on the position of a lead transition, we apply two different

voltages to each one of the dc gates in turn. For each set

of voltages, we measure the occupation of the double dot as

we sweep across two regions in the charge stability diagram.

(b),(c) To measure the tunneling times to the leads, we apply

megahertz-frequency square voltage pulses across the respec-

tive lead transition, forcing an electron to be exchanged with the

respective reservoir. The tunneling time can be extracted from

the rise time of the response signal. (d) The interdot tunnel cou-

pling is extracted by sweeping along the detuning ǫ, recording the

average charge occupancy, and measuring the broadening of the

transition.

leads is controlled by the virtual gates LeadY and LeadX ,

and it must be weak enough to prevent excess T1 relaxation

due to cotunneling or thermal activation and, at the same

time, be strong enough to allow fast qubit initialization

within tens of nanoseconds.
To extract the tunneling time to the X lead, we apply 25-

MHz square-wave pulses that force the system to switch
between the charge states (1, 0) ↔ (1, 1) [or, equivalently,
between (2, 0) ↔ (2, 1)] and use the sensing dot to mea-

sure the time-dependent occupation of the double dot. For
this purpose, we average the signal over approximately
1500 periods, recorded at a hardware sampling rate of 100

MS/s. A typical time trace is shown in Fig. 3(b). Apply-
ing the square-wave pulses to regions of charge stability
(i.e., where no charge transition is possible) allows us to

subtract the background due to direct sensor coupling. The
tunneling time to the lead can be extracted from the rise

times of the response to the square pulses [Fig. 3(b)], with
a lower sensitivity bound of about 25 ns determined by
the bandwidth of the tank circuit attached to the sensing

dot (faster tunneling times can be resolved with the reload
sweep discussed in Sec. III E). To fit these data, we use the

model

Vrf(t, t0)

=



















Vrf,0 +
1

2
A

cosh
(

t0/2tl,1
)

− exp
[

(t0 − 2t)/2tl,1
]

sinh
(

t0/2tl,1
) for t < t0,

Vrf,0 −
1

2
A

cosh
(

t0/2tl,2
)

− exp
[

(t0 − 2t)/2tl,2
]

sinh
(

t0/2tl,2
) for t ≥ t0,

(3)

where t0 = 2 µs is the half-period of the square pulse. It

produces an exponential rise and decay of the average sen-

sor signal with time constants tl,1 and tl,2 whenever the

gate voltage is changed. The prefactors and offsets of the

exponential rise and decay are derived from the require-

ment that the curve be continuous. The same procedure is

used to extract the tunneling times to lead Y, with the only

difference that now the square pulse has to force transi-

tions between the charge configurations (1, 0) ↔ (2, 0) [or

(1, 1) ↔ (2, 1)].

Typical target values for tl,1(2) range from 25 to 50 ns.

Importantly, since all initialization methods addressed here

require only tunneling to one lead (see Secs. III E–III F),

the barrier to the other lead can be made less transparent to

reduce relaxation [Fig. 3(c)].

D. Interdot tunnel coupling

The tunnel coupling tc between the two dots is mostly

controlled by the N and T virtual gates. It determines

the strength of the exchange interaction between the two

electrons and, therefore, the energy splitting J (ǫ) between

the singlet S and the triplet T0 in the (1,1) configuration.

In order to characterize the tunnel coupling, we mea-

sure the broadening of the interdot transition between the

(2,0)-(1,1) charge configuration by sweeping the detun-

ing ǫ orthogonally across the (2,0)-(1,1)-transition [see

Fig. 2(a)] and recording the average charge state [46], as

shown in Fig. 3(d). We typically measure each detuning

step for 1 µs and average over 4000 scans for a total

measurement time of 0.4 s. For simplicity, we extract

the broadening of the transition by fitting Eq. (2) to the

data, rather than using the physically correct model of an

avoided crossing, as we find the difference between the

two approaches to be marginal. The value extracted for the

effective temperature w now represents the interdot tunnel

coupling tc. Good values for tc for the operation of the qubit

range from 18 to 24 µeV, using an estimated lever arm of

9.8 V/eV. Smaller values of the tunnel coupling would lead

to Zener tunneling when sweeping through the (2,0)-(1,1)

transition and, therefore, should be avoided.

This characterization method is limited by temperature

broadening, which, in our setup, prevents tunnel couplings

below 9 µeV from being resolved. A similar approach

to ours is used in Refs. [34] and [35] for an automated
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tuning of the interdot tunnel coupling, whereas an alterna-

tive approach for determining the interdot tunnel coupling

based on time-resolved charge sensing is described in

Ref. [48]. Furthermore, the tunnel coupling can also by

extracted by photon-assisted tunneling spectroscopy [49].

Compared to the presented method, both alternatives are

time consuming and, thus, less attractive for our purposes.

E. Locating the measurement point

The operation of a qubit relies on the ability to reliably

initialize the qubit in a well-known state and to accurately

measure the qubit’s final state [50]. Historically, the stan-

dard approach for initializing a spin qubit in a singlet

state is based on the transition cycle T(1, 1) → (1, 0) →
S(2, 0), which requires electron exchange with both reser-

voirs [44] [here and in the following, the notation S(n, m)

and T(n, m) indicates the singlet and the triplet state in the

(n, m) charge configuration, respectively]. Here, we present

a modified version that only relies on tunnel coupling

to one lead. Compared to the old approach, this proce-

dure requires less tuning and enables simpler future device

layouts. It also allows for an enhanced charge-detection

readout scheme [51] to counteract the visibility loss at

high-magnetic-field gradients [52].

We first need to locate the region of metastable (1,1)

triplets within the (2,0) ground-state charge configuration,

i.e., the area around point M in Fig. 4(a). The latter repre-

sents a high-resolution charge-stability diagram, indicating

the thresholds of the relevant transitions. To identify the

region of metastable (1,1) triplets, we repeatedly apply

the pulse scheme M -R1-R2-M , while sweeping through

the RFX-RFY plane by adding a dc offset to the rf gates,

and waiting for 200 ns at points R1 and R2 [44,53]. Data

acquired during the pulse sequence are discarded and we

read out the state of the system only at the final point

M . If, during a scan, point M falls deep into one of the

charge-stability regions, we then simply observe the same

response as in a charge scan without pulses applied (see

Fig. 2). However, if the pulse sequence M -R1-R2-M drives

the system through three stability regions as indicated

in Fig. 4(a), the measured signal will then have a value

between the one corresponding to the (2,0) charge state and

that of the (1,1) state. The reason is that when we step from

R1 to R2, we initialize at random either a singlet S(2, 0) or

a triplet T(2, 0) state. If the system is in the T(2, 0) state,

then it tunnels into the (1,1) configuration when we step

back to point M . Vice versa, if the system in R2 is in the

S(2, 0) state, it remains in this state. In this way, we map

out the so-called measurement triangle (or trapezoid, if the

singlet-triplet splitting is smaller than the interdot charge

coupling, as in Fig. 4), i.e., the region of the RFX-RFY

plane where Pauli spin blockade allows for spin-to-charge

conversion.
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FIG. 4. (a) High-resolution charge-stability diagram around the

(2,0)-(1,1) transition used to define the two-electron spin qubit.

Important points used to initialize the qubit in different states

and for measurement are marked by dots and further explained

in the main text. Transitions are labeled in white. (b) Diagram

showing the energy relaxation cascade used to initialize the (1,1)

ground state |↑↑〉 at point T+ (see Secs. III F). SL⊗ ↓ (↑) denotes

the state of a singlet state in the left quantum dot and a down

(up) state in the right dot. Arrows indicate relaxation via electron

exchange with the (2,1) charge configuration. (c) Charge stabil-

ity diagram measured using the pulse sequence M -R1-R2-M (see

Secs. III E). The measurement trapezoid appears as an area where

the readout signal Vrf is between the values corresponding to the

S(2,0) and to the (1,1) configurations (yellowish turquoise area).

The blurred boundaries of the readout trapezoid reflect a fail-

ure of the random load pulse sequence rather than instabilities.

(d) Adding a waiting time at point S after the pulse sequence

from (c) maps out the “mouse bite” (yellow area within the mea-

surement trapezoid), i.e., the region of singlet reload within the

measurement triangle (see Sec. III E).

To determine the position of the singlet reload

point, we extend the pulse scheme to M -R1-R2-M -S-M

[see Fig. 4(c)], by including an additional 100-ns pause

at point S. When point S stays energetically between the

(1,1)-T(2,0) and (1,1)-S(2,0) transitions (see Fig. 2), then

electron exchange with the Y reservoir will lead to the

initialization of a (2,0) singlet state. If this is the case, mea-

suring the state of the system back at point M will give a

value of Vrf corresponding to the (2,0) charge state, instead

of the intermediate value observed with the M -R1-R2-M

pulse scheme. Scanning the position of the pulse cycle over
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FIG. 5. (a) To determine the optimal position of the singlet

reload point, we shift the position of point S in the pulse sequence

M -R1-R2-M -S-M along the direction δS [see text and Fig. 4(a)].

The optimal position for S is in the middle of the plateau of low

Vrf values. (b) The singlet reload time is extracted by applying

the pulse sequence M -R1-R2-M -S-M and measuring the triplet

return probability as a function of the waiting time t at point S.

(c),(d) The positions of the T+ reload point and of the ST+ tran-

sition can be determined using the pulse sequences described in

Secs. III F and III G, respectively, and result in peaks in the mea-

sured Vrf signals as a function of the displacement δT and of the

detuning ǫ.

the RFX-RXY plane (the relative position of the points

M , R1,2 and S is kept fixed) maps out the area known as

“mouse bite,” visible in see Fig. 4(d).

Once the mouse bite has been identified, we also know

a suitable position of point S for fast initialization of the

qubit in the S(2,0) state. To further optimize the position

of S, we repeat the pulse sequence M -R1-R2-M -S-M , but

now sweeping the position of point S perpendicularly to

the (2,0)-(1,0) transition line, while keeping all other points

of the sequence fixed. In particular, point M has to lay

within the mouse bite. As before, we measure the state of

the system only in the final point M . The response sig-

nal Vrf shows a plateau as a function of the position of

point S, at the signal level of the (2,0) charge ground state;

see Fig. 5(a). The two ridges where the signal increases

represent the onset of the transitions (1,0)→ S(2,0) and

(1,0)→ T(2,0), respectively. The optimal position of point

S for the operation of the qubit lays symmetrically between

these two points.

In a last characterization scan, we fix point S at

the optimal position and repeat the pulse sequence

M -R1-R2-M -S-M , now varying the waiting time t at point

S. Again, we measure the state of the system only in the

final point M . The longer we wait at point S, the higher the

probability to initialize a singlet S(2, 0) and, therefore, the

lower the value of Vrf measured at point M , see Fig. 5(b).

We fit these data with a simple exponential decay:

Vrf(t) = Vrf,0 + Ae
− t

tload , (4)

where Vrf,0, A, and tload are fit parameters. For a well-tuned

dot, the singlet reload time tload typically lies in the range of

10 to 50 ns. This characterization scan is complementary

to the one presented in Sec. III C. It exploits the full time

resolution of 1 ns of the AWG, as it is not limited by the

bandwidth of the readout tank circuit.

Having identified an optimal singlet reload point and

characterized the singlet reload time tload, in the rest of this

paper, whenever we write “initializing the qubit in the sin-

glet S(2,0) state,” we mean the following procedure: (i) go

to the optimal point S, (ii) wait in this position for approx-

imately 5 tload, and (iii) move to measurement point M .

Note that this initialization procedure requires only elec-

tron exchange with one lead, which means that only one

tunnel barrier has to be tuned to find an optimal operation

regime. Moreover, the initialization time is simply given

by the tunnel coupling to this lead and can be as fast as a

few tens of nanoseconds.

F. Locating the triplet T+ reload point

A fundamental technique for the operation of qubits

based on GaAs is dynamical nuclear polarization (DNP).

This technique is used for stabilizing the surrounding bath

of nuclear spin and relies on the ability to initialize the (1,1)

ground state T+ [28]. Originally, the T+ initialization was

done by exploiting both the (2,1)-(1,1) and the (1,0)-(1,1)

transitions, i.e., allowing electron exchange with both leads

[38]. Here, we report a different approach, again based on

tunneling only to one lead. The trick is to exploit the relax-

ation cascade shown in Fig. 4(b), which characterizes the

region of the stability diagram close to the (1,1)-(2,1) tran-

sition. In the presence of an external magnetic field Bext,

the triplet T+ represents the ground state of the (1,1) charge

configuration and transitions from the (2,1) ground state to

the excited states of the (1,1) configuration are not ener-

getically allowed close to the (1,1)-(2,1) boundary. Hence,

if we initialize the qubit in the S(2,0) state, and then pulse

to a point T+ close to the (1,1)-(2,1) transition [see Fig.

2(a)], the qubit will either go directly into the T+ state or

it will eventually reach this state at the end of the relax-

ation cascade sketched in Fig. 2(b). Importantly, for this

to happen, we need to ensure that the exchange interaction

satisfies the requirement Bext > J (ǫ) > �Bz, which is nec-

essary for having sufficient mixing between the |↑↓〉, |↓↑〉
states and the full relaxation to the T+ ground state. Here,

�Bz is the difference of the magnetic field in the two dots.

To find the optimal T+ reload point in the charge stabil-

ity diagram, we perform the following sweep. We initialize
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the qubit in the S(2,0) state and then pulse to point T+
without crossing the upper triple point to avoid measure-

ment artifacts. The distance between T+ and the upper

triple point has to be chosen so as to fulfill the energy

requirement Bext > J (ǫ) > �Bz. After a waiting time of

100 ns to allow energy relaxation, we switch back to the

measurement point M and measure the state of the sys-

tem. We repeat this procedure while sweeping the position

of point T+ by δT, perpendicularly to the direction of the

(1,1)→(2,1) transition [Fig. 4(a)]. The optimal position of

point T+ appears as a maximum of Vrf as a function of δT

[see Fig. 5(c)], indicating that a triplet is initialized while

waiting at point T+. To extract the exact position of the

reload point, we use a phenomenological model motivated

by Eq. (2) and given by

Vrf(δT) = Vrf,0 +
1

2
A1

[

1 + tanh

(

δT − δtl,1

w

)]

−
1

2
A2

[

1 + tanh

(

δT − δtl,2

w

)]

(5)

to fit the data. The position of the T+ point is then given by

(δtl,1 + δtl,2)/2.

G. Locating the ST+ transition

In addition to the location of the T+-reload point, it is

also necessary to know the location of the S-T+ anticross-

ing to perform DNP. To find the latter, we follow Ref.

[43] and initialize the qubit in the singlet state, change the

detuning ǫ, wait 100 ns at a given detuning, and then return

to the measurement point and read out the final qubit state.

When the detuning is at the S-T+ anticrossing, the hyper-

fine and the spin-orbit interaction can turn the initialized

S state into a T+ state, giving rise to a maximum in the

measured Vrf as a function of ǫ. Because the location of

the ST+ transition strongly depends on the local magnetic

field, any unintentional polarization, for example, due to

hyperfine mediated spin flips at the ST+ transition, shifts

the precise position of the anticrossing. To avoid this prob-

lem, we include pauses of a few milliseconds at the end

of each ǫ sweep, to allow any unintentional polarization to

relax. If needed, we average over a few different sweeps

and fit our data with a Gaussian model

Vrf(ǫ) = Vrf,0 + δVrfǫ + Ae−(ǫ−ǫstp)2/2w2
(6)

to extract the position ǫstp of the ST+ transition (Vrf,0, δVrf,

A, ǫstp, and w are fit parameters).

Not only is this position crucial for the pulsed DNP

scheme but, in combination with the T+ reload point, it

is also used as an anchor point in the charge stability dia-

gram. Adjusting the dot using the X and Y virtual gates

to obtain the same values for the ST+ and T+ scan after

a small charge–switching event usually restores all quan-

tum dot parameters and results in the same J (ǫ) relation.

Furthermore, the position of the ST+ crossing is used to

automatically determine switching events [20,54,55] that

shift the whole transition by several mV.

H. Tuning workflow

To summarize, once the (2,0)-(1,1) charge transition has

been identified, the typical fine-tuning workflow of a ST0

qubit starts by defining the virtual gates. The next step is to

bring the tunnel couplings to the leads in the right regime.

Then, the singlet reload point S and the measurement trian-

gle are determined. The energy splitting J (ǫ) of the qubit

is subsequently tuned by adjusting the inter-dot tunnel cou-

pling. A working scan of the S-T+ transition as described

in Secs. III G is a good indicator of a suitable interdot tun-

nel coupling for the operation of the qubit. Usually, tuning

the tunnel couplings is an iterative procedure, as adjusting

the T and N virtual gates used to tune the interdot coupling

also affects the coupling to the leads a little. Finally, the

position of the T+ reload point is determined. During the

whole tuning procedure, we periodically check the exact

position of the (2,0)-(1,1) transition by recording a charge

stability diagram. The triple points, which act as anchor

points, are extracted automatically by a fit that includes a

model of the charge transition, as described in Sec. III A.

The lower triple point is used as a reference for the mea-

surement point and either an offset on the rf gates or on
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FIG. 6. Characteristic charge-stability diagram of the sensing

dot, measured with rf reflectometry. Depending monotonically

on the conductance through the dot, Vrf shows Coulomb oscilla-

tions once the source and drain barriers are sufficiently opaque.

Tuning the sensor to a sensitive position (see circle) allows for

charge sensing of the nearby double quantum dot.
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the virtual gates X and Y is used to center the transition

accordingly. The fit stability of all scans requires a signal-

to-noise ratio of the order of 5 (measured as the ratio of

a transition step size to the rms fluctuation away from the

transition in a charge-stability diagram). To ensure a high

sensitivity, we periodically check the sensing-dot operating

point (see Sec. 1 in the Appendix) by performing line scans

through the charge stability diagram in Fig. 6 and adjust the

sensing-dot gate voltages accordingly. Manual retuning to

restore the quantum dot parameters once the charge sen-

sor becomes insensitive or a charge rearrangement occurs

takes in general a few iterations of performing the various

characterization scans and adjusting the gate voltages and

can typically be performed in a couple of minutes.

IV. CONCLUSION

This paper provides a detailed description of tuning and

characterization routines that we use to realize a ST0 qubit

in a GaAs double quantum dot. We describe efficient meth-

ods to determine the tunnel couplings between the dots and

the leads, and methods to locate the various points in the

charge-stability diagram that are needed for the operation

of the qubit itself or for pulsed feedback DNP.

While all relevant quantitative double dot parameters

are already obtained automatically, the decision of how to

adjust the gate voltages is currently made by the human

operator, based on experience. A crucial next step is to

automate this step also. One complication is that the effect

of the T and N gates on the interdot tunnel coupling

changes substantially in different regions of gate voltage

space or when charge rearrangements in the vicinity of

the dot occur, including even sign changes. This behavior

renders tuning algorithms based exclusively on precali-

brated gradient information ineffective, but it could be

addressed with more sophisticated, adaptive approaches.

For example, the use of a Kalman filter [56] to continu-

ously update the response tensor based on the recent tuning

history appears promising. Hence, we are confident that

the procedures described here will be a very useful basis

for reaching that goal. Such advances will be indispensable

as soon as the number of qubits increases substantially. It

will likely also be necessary and possible to detect data

sets affected by charge rearrangements, e.g., by plausibility

checks on the fit parameters and residuals.

While all measurements presented in this paper are per-

formed on a GaAs double quantum dot operated as an ST0

qubit, the only procedures that are GaAs specific are those

needed to set up DNP operating points. All other tuning

methods are equally adaptable to Si-based devices.
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APPENDIX: COARSE TUNING OF THE

QUANTUM DOTS

In this appendix, we cover the first step of tuning the

device to either the (2,0)-(1,1) or the (1,1)-(0,2) charge

transition. Additionally, we describe the tuning of the adja-

cent quantum dot used for charge sensing of the qubit

dots. These methods have hardly changed compared to

standard quantum transport measurements [38] and will

need further refinement [33] for automation. They are

included here for completeness. For the initial coarse tun-

ing of the double dot, instead of using rf reflectometry,

we directly measure the conductance through the double

dot and through the sensing dot (see Fig. 1). To do so,

we apply a voltage bias of 100 µV across the devices.

The resulting currents are converted to voltages (named

VSD and VD for the sensing dot and double dot, respec-

tively) using a home-built IV-converter and measured with

a lock-in amplifier.

1. Tuning of the sensing dot

The first step in the tuning procedure is to set up charge

detection through the sensing dot. This requires finding a

set of voltages applied to the sensing dot gates SB1, SB2,

and SP (gate names are defined in Fig. 1) such that the

conductance through the dot is maximally sensitive to the

local electrostatic potential. To do so, we measure Vrf while

performing a two-dimensional scan with the sensing dot

gates SB2 vs SB1&SP. Since Vrf depends on the conduc-

tance through the dot, Coulomb oscillations appear in the

measured signal when the applied voltages are sufficiently

negative to make the source and drain barriers opaque.

Figure 6 shows a region in gate voltage space that shows

the typical pattern of a single quantum dot [58]. In this

particular sample, SP and SB1 are shorted and thus had to

be kept on the same potential. Usually, SP can be used to

fine-tune the sensing dot and to shift it closer to the dou-

ble quantum dot. To obtain the best charge sensitivity, the

voltages applied to SB2 vs SB1&SP have to be tuned to

values where the slope of the Coulomb peak is steepest.
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FIG. 7. (a) Honeycomb pattern of the double dot resolved using

the sensing dot. Background oscillations are caused by an imper-

fect compensation of the response of the sensor to gates B1

and B2. (b) Direct transport measurement through the double

dot. Coulomb peaks are visible only for not too negative volt-

ages. (c) Same as in (a), but this time using the side gates S1

and S2 instead of B1 and B2. This typically reduces the back-

ground oscillation in the transconductance of the sensing dot. The

different intensities of the lines delineating the honeycomb pat-

tern reflect the transparency of the tunnel barriers to the external

leads.

2. Locating the (2,0)-(1,1) or (0,2)-(1,1) charge

transition

The second step is to determine the depletion and pinch-

off voltages of the different gates that define the qubit

double quantum dot. To do that, we directly measure the

conductance through the double dot by applying a 100-µV

bias voltage VD, as shown in Fig. 1, and measuring the

resulting current. Measuring the conductance as a function

of the voltage applied pairwise to the gates N12 and T12,

S1 and B1, S2 and B2 (see Fig. 1 for gate nomenclature)

allows us to determine the depletion voltages.

The gate voltages are then set close to their deple-

tion voltages and the device is tuned close to complete

pinch-off. Next, we perform a two-dimensional scan over

a couple of tens of millivolts with the gates B1 and B2.

Usually, we anticipate to first form a large single quantum

dot and then separate it into two dots by applying more

negative voltages on the T12 and N12 gates. If the tun-

nel barriers between the dot and leads X and Y are almost

pinched off and have similar transmission probabilities,

Coulomb blockade peaks should appear, showing the char-

acteristic honeycomb pattern of a lateral double quantum

dot [58]. Observing this honeycomb pattern in the direct

current through the double dot close to pinch-off can be

challenging because the current goes to zero and Coulomb

peaks are hardly detectable; see Fig. 7(b). To study this

regime, we then use the sensing dot. Because of the capac-

itive coupling between the double dot and the sensing dot,

a change in the occupation of the double dot results in

an abrupt change in the current through the sensing dot

and, therefore, into a sharp signature in the transconduc-

tance dVSD/dB1 [Fig. 7(a)]. When performing this type

of scan, the voltage SB2 is adjusted to compensate for

the unintentional influence of the stepping gate B2 on the

potential of the sensing dot. Similar scans can also be per-

formed by using the side gates S1 and S2 instead of B1

and B2. This typically reduces the background oscillation

in the transconductance of the sensing dot [see Fig. 7(c)],

as the gates S1 and S2 have a weaker influence on the

sensing dot than B1 and B2. Going toward more nega-

tive voltages eventually locates either the (2,0)-(1,1) or

the (0,2)-(1,1) charge transition. Once a suitable transition

has been found, we adjust S1 and S2 such that a recorded

high-resolution charge stability diagram via rf reflectome-

try using the rf gates, RFX and RFY, is centered around the

transition of interest [see Fig. 2 (a)].
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