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Quantum computation based on semiconductor electron-spin qubits requires high control of tunnel couplings

between the quantum dots and the electron reservoirs. Potential disorder and the increasing complexity of the

two-dimensional gate-defined quantum computing devices set high demands on the gate design and the voltage

tuning of the tunnel barriers. We present a Green’s formalism approach for the calculation of tunnel couplings

between a quantum dot and a reservoir. Our method takes into account in full detail the two-dimensional

electrostatic potential of the quantum dot, the tunnel barrier, and the reservoir. A wideband limit is employed only

far away from the tunnel barrier region where the density of states is sufficiently large. We calculate the tunnel

coupling including potential disorder effects, which become increasingly important for large-scale silicon-based

spin-qubit devices. Studying the tunnel couplings of a single-electron transistor in Si/SiGe as a showcase, we

find that charged defects are the dominant source of disorder leading to variations in the tunnel coupling of four

orders of magnitude.

DOI: 10.1103/PhysRevB.98.155320

I. INTRODUCTION

Gate-defined quantum dots (QDs) have proved to be a

versatile platform for confining charge, electron-spin, and

hole-spin quantum bits (qubits) in various material systems.

Tremendous progress has been achieved in planar AlGaAs

[1–6] and Si-based systems [7] such as complementary metal-

oxide semiconductor structures [8,9], SiGe [10–13], and Si

nanowires [14–17]. Focusing on scalability towards large-

scale quantum systems [18–20], the complexity of the gate de-

sign increases, trending to denser gate configurations of QDs

[10,11,21–24]. For scaling towards large numbers of qubits,

it is essential to design the electrostatic gate patterns such

that key parameters are nearly equal for each qubit, despite

the typical electrostatic disorder present, due to imperfec-

tions of the host crystal lattice. Examples of such parameters

are the inter-QD tunnel coupling and QD-to-reservoir tunnel

coupling. Specifically, the tunnel coupling from the QD to

electron reservoir has to be well controlled for spin-to-charge

conversion schemes involving spin-state-dependent tunneling

[1,25]. Charge readout of multiple QDs in close proximity has

been demonstrated using single-electron transistors (SETs),

for which tunnel barriers to both source and drain reservoirs

have to be properly set [26].

Tunnel couplings can be tuned by gate voltages over a wide

range [27,28]. Automatic tuning of a large number of quantum

dots [29] would require, however, that the tunnel couplings be

calculated for disorder potentials. Optimizing the gate design

in this respect requires taking the details of the potential in

the vicinity of the tunnel barriers into account. The increasing

complexity of large-scale devices makes gate design develop-

ment based on iterative fabrication and experimental studies
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alone very inefficient. Specific properties such as electrostatic

disorder can be simulated prior to sample fabrication [30].

The tunnel coupling between two QDs (closed system) can

be numerically calculated by solving the Schrödinger equa-

tion. Calculating the tunnel coupling between a QD and a

reservoir (here defined as an open system) solving the full

system is challenging. Several different approaches to take

the tunnel coupling between a QD and a reservoir or between

two reservoirs into account have been used, e.g., based on

the master equation [31] or a transfer Hamiltonian [32–34],

as well as self-consistent calculation schemes [35]. The

Wentzel-Kramers-Brillouin (WKB) approximation, which is

based on a semiclassical, one-dimensional trajectory of an

electron [36–38], is prominent.

In this work, we present an approach for calculating the

tunnel coupling in an open two-dimensional system based on

Green’s formalism with a wideband limit. Applying the wide-

band limit only far away from the tunnel barrier, this approach

allows us to capture potential details of the reservoir region

in close proximity to the QD. The calculation of the tunnel

coupling is exact in principle and can be adapted to available

computational resources by setting a boundary within the

two-dimensional reservoir. The boundary divides the potential

region which is fully quantum mechanically captured from the

shapeless wideband approximated region. We validated our

method on a two-dimensional model system with N sites and

found the analytically calculated value for the tunnel coupling

within a 6% error. The remaining small discrepancy is a result

of our tight-binding model. The resulting error in the tunnel

coupling could be easily compensated by tuning gate voltages

during an experiment. We apply our method of calculating the

tunnel couplings to an SET in a Si/SiGe heterostructure as

a showcase. Since our method captures the full details of the

electrostatic potential, we are able to study the effect of three

different types of electrostatic disorder sources considered
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FIG. 1. Electrostatic potential of the SET overlaid by a 2D tight-

binding model using nearest-neighbor coupling coupled to a quan-

tum dot in a Si/SiGe heterostructure. The whole system (readout QD

and reservoir) is divided into three subsystems containing the readout

QD (system S, depicted in red), the electronic reservoir far away

from the readout QD (system L, depicted by black circles), and an

intermediate system (system M , depicted by black dots) connecting

S and L. Using the wideband limit, only the first sites of system L

have to be used. For the calculations, we consider a much higher

density of sites (dots) than plotted here.

to be present in Si/SiGe heterostructures. For our SET gate

design, we find that charged defects at the heterostructure

surface are dominant and can lead to variation in the tunnel

coupling of four orders of magnitude.

This paper is structured as follows: In Sec. II, we present

the method for the calculation of tunnel couplings in open

quantum systems based on Green’s formalism. In Sec. III,

we use the presented method on the electrostatic potential

landscapes of our SET gate design, including three different

disorder effects present in a Si/SiGe heterostructure as a

showcase. In Appendix A, our numerical method is applied

to an analytic two-dimensional (2D) toy-model system as a

benchmark test, revealing a 6% error.

II. THEORY

To calculate the tunnel coupling tC between a QD and

its reservoirs, we take the following approach. We divide

the whole system (dot and reservoir) into three adjacent,

nonoverlapping subsystems: system S, which represents the

QD; system L, which represents the electronic reservoir far

away from the QD; and system M , which is an intermediate

region connecting S and L (see Fig. 1). Each subsystem is

tunnel coupled to the neighboring one. We are interested in the

level broadening of the eigenstates of S due to the coupling to

M + L. In a tunnel-Hamiltonian description in which system

S is directly coupled to the reservoir, this level broadening

is directly related to the tunnel-coupling matrix element tC
between the QD and reservoir. We will treat system L in the

wideband limit (also called Markov approximation), meaning

that we assume an energy-independent constant density of

states ρL. Physically, this corresponds to assuming that system

L is not affected by the system S + M and that all electrons

injected into L cannot return to the system. For the calculation

of tC, we follow a Green’s formalism approach analogous to

that in Ref. [39]. For the lead system with Hamiltonian HL,

the Green’s function operator is defined by

ĜL(h̄ω) =
1

h̄ω − HL

, (1)

where h̄ω is the energy parameter and h̄ is the reduced Planck

constant. Using the Kramers-Kronig relation, the Green’s

function is derived using the corresponding density of states

ρL of the leads with

ĜL(h̄ω) =

∫

dω′

2πh̄

ρL(ω′)

ω − ω′ + iη+
, (2)

where η+ is a positive regularization factor. Since the actual

density of states of the reservoir is unknown, we assume

a wideband limit (also called Markov approximation) with

constant ρL(h̄ω) [40,41]. Hence, Eq. (2) simplifies to

ĜL(h̄ω) = −iπρL. (3)

Alternatively, the Green’s formalism is capable of describ-

ing the reservoir system analytically by infinite 2D plane

waves. This leads to additional challenges, e.g., choosing a

suitable 2D representations of plane waves, which are out of

the scope of this work. Focusing on subsystem M coupled

to the lead system and integrating out the lead, the effective

nonhermitian Hamiltonian of the reservoir is

HM,eff = HM + w
†
MLĜLwML, (4)

with the Hamiltonian HM of the isolated intermediate system

and wML being the coupling matrix between M and L. HM,eff

is diagonalized with the eigenvalues ǫm − iγm, with γm > 0,

and left eigenvectors 〈�m′ | and right eigenvectors |�m〉. Note

that 〈�m′ | �= |�m〉† since HM,eff is non-Hermitian but both

eigenvectors fulfill the biorthogonality relation

〈�m′ |�m〉 = δm′m. (5)

With this procedure, we find the Green’s function operator of

subsystem M to be

ĜM(h̄ω) =
1

h̄ω − HM,eff

=
∑

m

|�m〉〈�m|

h̄ω − ǫm + iγm + iγext

,

(6)
where we introduce γext as an additional external regular-

ization parameter which compensates for the finite number

of sites numerically taken into account. In Appendix A, we

discuss the optimization of γext in detail.

Focusing on subsystem S, the Hamiltonian HS is solved by

HS|s〉 = ǫs|s〉 with the eigenvector |s〉 and its corresponding

eigenvalue ǫs. The time evolution of a state |s〉 is described by

its retarded Green’s function

GS(t ) = −i�(t )〈s|e−iHtot t |s〉, (7)

with Htot being the Hamiltonian of the total system in S,

where subsystems S and M are coupled by the matrix wSM

analogous to Eq. (4). The Fourier transform of Eq. (7) is

GS(h̄ω) =
1

h̄ω − ǫs − �S(h̄ω)
, (8)

where

�S(h̄ω) = 〈s|w
†
SMĜM(h̄ω)wSM|s〉 (9)

is the self-energy. The real part of �S corresponds to an

energetic shift within system S induced by the coupled

system M , also called the Lamb shift [42]. This Lamb shift

depends on all states within system M . In the following, we

assume weak coupling between subsystem S and M + L.

This corresponds to the physical situation where |s〉 is

a well-defined state within S. The imaginary part of the
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self-energy �S leads to an energy-level broadening in system

S, resembling a decay of the wave function |s〉. This decay

corresponds to an electron within the QD which tunnels

via the intermediate system M into the lead system. In this

model, the energy-level broadening in S corresponds to the

tunnel coupling of the state |s〉 given by

tC = 2 Im[�S(ǫs)], (10)

where the factor of 2 accounts for the decay of the

probability instead of the probability amplitude as

|�|2 ∝ exp[−2Im(�S)t/h̄] = exp(−tCt/h̄).

Implementation recipe

For reference, we want to highlight all necessary steps

to use the presented method for the calculation of tunnel

couplings. We start with a computed electrostatic potential

containing QDs and electron reservoirs. The Thomas-Fermi

approximation is used to describe electron reservoirs, which

imply significant screening effects. Regions containing a QD

are calculated using superposition of the induced electrostatic

potential of the modeled gate design which effectively ne-

glects Coulomb interaction within the QD. For a subsequent

transport calculation including more electrons in the QD,

Coulomb interaction has to be taken into account. This elec-

trostatic potential is then transferred to our tight-binding (TB)

model with lattice spacing a. In this TB model, the tunnel

coupling is calculated by following a three-step protocol:

(i) We define the presented subsystems S and M . The trun-

cation between S and M is defined perpendicular to the

tunneling direction along the potential maximum of the tunnel

barrier. At the maximum of the tunnel barrier the influence of

the boundary conditions used is minimal for both subsystems.

Subsystem L is defined as the remaining part of the reservoir,

which is not covered by M and can be chosen by balanc-

ing out the importance of details of the reservoir potential

versus computations power. (ii) We define the corresponding

Hamiltonians HS and HM and coupling matrices wSM and

wML. Using Eq. (3) with a constant 2D density of states

and wML in Eq. (4), HM,eff is defined. (iii) By solving the

eigenvalue problem of HS and HM,eff , the self-energy �S can

be calculated using Eqs. (6) and (9). By solving the eigenvalue

problem of HS and inverting GM(h̄ω), �S can be calculated

directly. Finally, the tunnel coupling tC is calculated using

Eq. (10). Alternatively, tC can also be calculated by using a

computationally cheaper matrix inversion.

III. TUNNEL COUPLING IN REALISTIC SYSTEMS

In this section, we use the presented algorithm to calculate

tunnel couplings of an open system including potential disor-

der with three different length scales λ in undoped Si/SiGe

quantum wells. As a showcase, the electrostatic potential

V (x, y) of a QD capacitively coupled to a readout QD of an

SET is used and shown in Fig. 2(a), computed solving the

three-dimensional Poisson equation using the COMSOL MUL-

TIPHYSICS software package [43]. In regions of high electron

concentrations, e.g., reservoirs, screening effects lead to flat

electrostatic potentials. Here, the Thomas-Fermi approxima-

tion is used. The shape of these reservoirs is defined by po-

tential barriers exceeding the Fermi energy µF. The resulting

computed electron density is shown in Fig. 2(b). In regions

of expected low electron concentrations, e.g., QDs and tunnel

barriers, the electrostatic potential is calculated using a linear

superposition of the electrostatic potential of every gate inde-

pendently. Within this section the Fermi energy is defined by

µF = EG/2 = 555 meV, with an energy band gap of silicon

EG = 1.11 eV as a reference level. Since different reference

levels require only a suitable set of gate voltages to induce a

similar electrostatic potential, we want to point out that the

cryogenic energy band gap of silicon is EG = 1.17 eV for

temperatures T < 10 K for completeness [44]. We define our

tight-binding system using nearest-neighbor coupling with a

spatial resolution a = 1 nm. The on-site potential Vij is given

by the previously computed electrostatic potential V (xi, yj) at

position xi = x/a and yi = y/a. The nearest-neighbor cou-

pling element is defined by tij = h̄2
�ij/2m∗a2, with m∗ being

the effective mass of electrons and �ij being the discrete

two-dimensional Laplacian [39]. By defining the separate

subsystems according to the electrostatic confinement, we

apply the presented method and calculate the tunnel coupling.

To visualize the tunnel barrier in energetic height and width

in one dimension, we calculate a semiclassical tunneling path

l(x, y) of an electron. To calculate l(x, y), we use the Dijkstra

algorithm [45] with on-site weights

√

2m∗a2(Vij − ǫS)/h̄2.

These weights are motivated by the one-dimensional WKB

approximation. Along this path the potential is evaluated, and

the tunnel barrier is characterized. This is shown in Fig. 2(a)

and for the discussed types of disorder in Fig. 2(e). Note

that l(x, y) is sensitive to numerical errors and is not used to

calculate tC using our ansatz. For the potential landscape of the

SET without any disorder effect included, the tunnel coupling

of the readout QD with ǫS = EG/2 to the source reservoir

is t
(ref)
L = 1.3 µeV. We obtained this result by using γext =

700 µeV in Eq. (6) and N = 36 589 sites. We computed

n = 148 eigenstates of system M + L with energies in the

vicinity of ǫS and found quality indicators fγ = 0.008 and

fn = 21.16. The determination of n and the definition of the

quality indicators are the subject of the Appendixes A and B.

The tunnel coupling to the drain reservoir is t
(ref)
R = 2.0 µeV

with γext = 700 µeV and N = 36 944. We computed n = 148

eigenstates with fγ = 0.02 and fn = 19.19. For deviations

from the tunnel barrier potential maximum between S and

M on the scale of the used spatial resolution a, we calculate

an error of tunnel coupling �t
(ref)
L = 0.3 µeV and �t

(ref)
R =

0.4 µeV. This error can be reduced by decreasing the lattice

spacing of our tight-binding model. The tunnel couplings t
(ref)
L

and t
(ref)
R are used as reference values for the effect of different

disorder types on tunnel couplings.

A. Ge–Ge bond disorder

In SiGe unit cells, the specific arrangement of Si and Ge

atoms in the diamond lattice leads to energy variations of

the conduction band edge. From tight-binding simulations

of periodic SiGe unit cells, Ge atoms on neighboring

sites decrease the conduction band by approximately

δV = 100 meV compared to a fully random barrier [46]

and hence increase the energy of the electrons locally on

the spatial resolution of an eight-atom unit cell. To model
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(a) (b)

(c)

(e)

(d)

FIG. 2. (a) Tuned electrostatic potential V (x, y ) forming two reservoirs (source and drain), one readout QD, and an adjacent QD within

the 2DEG layer in a Si/SiGe heterostructure. A qualitative semiclassical tunnel path of an electron from source to drain is shown by l(x, y ).

(b) Electron density corresponding to (a) overlaid with the used gate structure (outlined by white lines). The Thomas-Fermi approximation is

used in regions of high electron density to include screening effects leading to a flat potential. (c) Exemplary effective electrostatic potential

induced by remote impurities located at the interface between the heterostructure and an oxide layer with a distance of 34 nm to the QW and

a positive charge qe = e, with e being the electron charge. (d) Normalized distribution of the simulated tunnel couplings σ (tC) for different

types of disorder. QW steps as a possible source of disorder exhibit variations within one order of magnitude in tC with Ndis = 104 random

disorder configurations. Ge–Ge bonds as a possible source of disorder exhibit variations in two orders of magnitude around the reference

value. Charged defects lead to variations in tC of more than four orders of magnitude, Ndis = 200. The tunnel couplings without any disorder

are t
(ref)
L = 1.3 µeV and t

(ref)
R = 2.0 µeV. (e) The electrostatic potential evaluated along the semiclassical tunnel path l(x, y ) for three different

types of disorder in comparison to the case with no disorder. Within the reservoir where the Thomas-Fermi approximation is used, the effects

of the disorder are screened by electrons. Potentials are offset by 5 mV for clarity. The potential fluctuations due to QW steps have to be

enlarged by a factor of 10 prior to adding them to the gate-induced potential because otherwise they are not visible in the plot.

this disorder effect, we assume a binomial distribution pn(x)

to find n Ge–Ge bonds surrounding a Ge-occupied site

given an alloy composition factor x. To weight the disorder

effect with respect to the electron envelope wave function

�(z), the wave function overlap F =
∫ ∞

zI
|�(z)|2dz with

the SiGe layer (z > zI) is included, where zI is defined at

the Si/SiGe interface. The resulting distribution χGe–Ge and

magnitude mGe–Ge of potential variations �V over the number

of Ge–Ge bonds n surrounding a single atom are

χGe–Ge(�V ) = pn(x)xn(1 − x)4−n,

mGe–Ge(�V ) = −
n

2
δV F. (11)

The factor of 1/2 in magn(�V ) accounts for the double

counting of each bond when iterating over the eight-atom unit

cell. Finally, we define the length scale of this fluctuation by

the lattice constant of the Si(1−x)Gex alloy with λGe−Ge bonds ≈

0.5 nm and transfer the presented potential variations to our

tight-binding model. The model results in a number of Ge–Ge

bonds n = 6 ± 4/nm−2, where we neglect further variations

along z. The nonzero average of the Ge–Ge bonds leads to an

average increase in the electron energy of �V̄ = 2.5 meV.

This energy offset is neglected within the following study

since it is compensated by an initial tuning of the electrostatic

potential. By adding �V to the electrostatic potential, the tun-

nel coupling can be calculated as before. The resulting effect

on the electrostatic potential is shown by the semiclassical

tunnel path in Fig. 2(e). The normalized distribution σ (tC)

of the calculated tunnel coupling tC for Ndis = 104 randomly

generated Ge–Ge bond ensembles is shown in Fig. 2(d). Due

to the small length scale λGe−Ge bonds and the comparable

magnitude of the variation with respect to the barrier height,

this modeled disorder leads to varying tunnel couplings within

two orders of magnitude compared to the reference value.

B. Quantum well step disorder

Interface roughness has been reported to be a major source

of disorder leading to variations of the valley splitting [47].

Furthermore, atomic steps at the interface of Si/SiGe result
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in changes in the confinement along the growth direction

and hence to a fluctuation in the energy of the electrons.

To model the latter effect, we restrict ourselves to relative

changes of only one step at each interface. Assuming effective

single-layer growth using molecular beam epitaxy, the step

height is hStep = aSiGe/4 = 0.135 nm. This leads to three

different confinement energies, E0, E+, and E−, along z. E0

is the energy for a quantum well (QW) without any additional

step. E+ is the energy for a QW with a width decreased by

one interface step hStep, and E− is the energy for a QW with

a width increased by hStep. The resulting potential variation is

�V± = −(E0 − E±), (12)

where E0 and E± are the energies of the three different

confinements as defined above. These energies are calculated

for an applied voltage bias of EG/e, a QW width of 12 nm, and

a conduction band minimum difference of �Ec = 160 meV

of the heterostructure. There is no potential offset �V̄± = 0

by construction. Furthermore, we define the length scale of

this fluctuation to vary uniformly in the range of λQDstep =

1–24 nm, corresponding to wafer miscut angles of α =

7.8◦–0.3◦. The tunnel coupling is calculated as before. The

effect of this type of disorder on the semiclassical tunnel path

is shown in Fig. 2(e), where due to the small magnitude of ap-

proximately 100 µeV, the potential fluctuations are multiplied

by a factor of 10. Due to the relatively long coherence length

λQWstep and the small magnitude of the variation compared to

the tunnel barrier height, this disorder effect leads to variation

in the tunnel couplings smaller than one order of magnitude

compared to the reference value, as shown in Fig. 2(d). Note

that we did not include phase shifts of valley states generated

by the SiGe interface roughness [48]. Arguably, the valley tun-

nel blockade known from double quantum dots plays a minor

role for the tunnel coupling of a quantum dot to a reservoir, as

the density of states of the latter is continuous. Valley effects

will be investigated in more detail in future work.

C. Impurities

We refer to positively charged defects located in the het-

erostructure as impurities. Depending on the location, charged

defects can have a significant influence on the tunnel barrier

[49]. Impurities formed by oxygen atoms located near and

within the Si QW have been reported with concentrations

of 1010–1011 cm−2 introduced during the growth of the

heterostructure in a chemical vapor deposition reactor [50].

Remote impurities located at the interface between the het-

erostructure and an Al2O3 oxide layer have been suggested to

dominate electron scattering [51]. In this section, we introduce

impurities located at the interface of the heterostructure and a

possible oxide layer 34 nm above the QW. All impurities are

positively charged with qImp = e, with e being the elementary

electric charge, and randomly distributed over the interface,

leading to a concentration of 1010 cm−2. By adding these

impurities directly within our COMSOL model, the dielectric

properties of the modeled heterostructure including the gate

design are incorporated. In comparison to the initially tuned

potential without disorder, these impurities lead to a resulting

average positive offset V̄Imp ≈ 3.5 mV, with a standard de-

viation of the potential fluctuations of �VImp ≈ 1.3 mV, as

L

R

FIG. 3. Calculated tunnel coupling for Ndis = 100 randomly

distributed positively charged impurities with a concentration of

1010 cm−2. The presented data are sorted with respect to tL. For every

impurity distribution i, the resulting tunnel couplings tL and tR and

the corresponding global compensation voltage Vcomp are shown.

shown in Fig. 2(c). We compensate V̄Imp by a global voltage

offset of Vcomp = V̄Imp applied to all gates used for each

single-impurity ensemble. This is a rather simple compensa-

tion scheme which requires only a global voltage parameter

to be set. In this manner, we compensate the potential and end

up with two tunnel barriers with a probability of 59% and at

least one tunnel barrier with a probability of 96% using 100

randomly chosen impurity ensembles. Within an experiment,

the global voltage can be tuned more precisely to achieve the

desired tunnel couplings. By calculating the tunnel coupling

from the source reservoir into the readout QD (left barrier)

and the readout QD into the drain reservoir (right barrier), we

quantify the effect of impurities on the functionality of our

SET for several different impurity distributions. The resulting

distribution of the tunnel couplings is shown in Fig. 2(d) and

varies over four orders of magnitude using the simple compen-

sation scheme. This type of disorder resembles the strongest

variation in tC compared to the previous discussed effects. We

observe differences in the tunnel couplings between the left

and right tunnel barriers up to several meV, as shown in Fig. 3.

The different distributions of positively charged impurities are

indexed by i and sorted with respect to the tunnel coupling

of the left barrier. Ensembles with only one remaining tunnel

barrier are included within this plot (i � 91) and show the

largest disorder impact on the tunnel barriers. Here, the Fermi

energy exceeds the height of the left tunnel barrier. Note that

left and right tunnel barriers are uncorrelated in Fig. 3. Thus,

a precisely tuned global voltage is insufficient to tune both

tunnel couplings. It requires involved individual tuning of gate

voltages to set both tunnel barriers as desired.

IV. CONCLUSION

We presented a method for calculating tunnel couplings of

open quantum systems. We aimed especially at the simulation

of gate patterns and disorder for gated semiconductor

quantum computers. We applied this method to a gate layout

of an SET charge detector as a showcase. The method is

applicable to various systems and is flexible with respect

to available computational resources while including all
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modeled details of the electrostatic potential. The wideband

limit is solely used for the reservoir region far away from

the barrier. Basic models for three different disorder sources,

typical for Si/SiGe heterostructures, are used to study the

effect of electrostatic disorder on the tunnel coupling of the

SET, pointing towards charged defects as a strong source of

varying tunnel coupling over four orders of magnitude. While

a detailed model of disorder potential in Si/SiGe is beyond

the scope of our work, we expect that our method can be used

to calculate tunnel couplings with improved noise models of

various material systems.
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APPENDIX A: VALIDATION

To test this approach, we apply the presented method to

an analytically solvable tight-binding toy-model system. The

validation focuses on the use of the presented wideband limit

and on the calculated tunnel coupling. The toy-model system

is two-dimensional and consists of a single site coupled by

the transition element w to a 2D lattice with N sites. Within

the 2D lattice, adjacent sites are coupled by nearest-neighbor

transition elements t . To define the presented subsystems, the

2D toy model is schematically shown in Fig. 4(a). The single

site is defined as subsystem S, depicted in blue. Subsystem M

is defined by all inner sites of the 2D lattice and is depicted

in red. Without further restriction subsystem S is coupled to

the middle site of subsystem M . The outer sites of the 2D

lattice are defined as subsystem L, depicted in yellow. Since

we approximate the lead system, it is sufficient to account for

only the sites, which are directly coupled to system M .

1. Wideband limit

First, we validate the wideband limit in the lead system.

Therefore, we compare the computed numerical density of

states of the 2D toy-model system using the wideband limit

with the density of states for a discrete infinite 2D lattice. The

latter is calculated analytically [52]:

ρM,analytic(h̄ω) =
1

2tπ2
K

[

1 −

(

h̄ω − V0 − 4t

4t

)2]

,

0 < |h̄ω| � V0 + 4t.

(A1)

Note that if the analytic expression of ρM,analytic were known

for all problems, we could use ρM,analytic(h̄ω) in Eq. (2) and

calculate HM,eff using Eq. (4) and thus calculate tC analyti-

cally. Since in most realistic problems ρM,analytic is unknown,

we use Eq. (3), the wideband limit, instead of the Kramers-

Kronig relation in Eq. (2). For a 2D toy model with N = 1521

sites and t = 1, the numerical and analytic densities of states

are shown in Fig. 4(b). The numerical density of states of the

2D lattice can be calculated using Eq. (6) with ρM(h̄ω) =

−iTr[ĜM(h̄ω)] [39]. Up to a fluctuation of the numerical

density of states, both solutions coincide and follow the same

behavior with respect to the energy h̄ω. For h̄ω ≈ 0, both

solutions exhibit a Van Hove singularity [53]. In the vicinity

of the energy band edge |h̄ω| ≈ 4t , the deviation between the

analytic and numerical solutions increases. This is explained

by the decreasing imaginary part of the energy levels, leading

to more δ-function-shaped states. For energies 0 < |h̄ω| < 4t ,

the analytic density of states is rather constant. In comparison

to the infinite system, the finite size of the model leads to an

overall fluctuation. Focusing on states |�m〉 and calculating

Re[〈�m|ĜM(h̄ω)|�m〉], all energy levels are approximately

Cauchy-Lorentz shaped. Due to the nonequidistant energetic

distribution of the energy levels, the energetic overlap of

neighboring states varies, resulting in a nonconstant density

of states [see the inset in Fig. 4(b)]. Hence, the fluctuation

is a function of energy h̄ω and system size N . For a finite

number of sites N in the 2D toy model, this fluctuation can

be compensated by an additional external decay parameter

γext used as regularization factor, which is added to iγm →

i(γm + γext ), as already introduced in Eq. (6). To define a

quality indicator for the fluctuation, we use

fγ =
AρM

ρM,max

∣

∣

∣

∣

h̄ω=ǫS

, (A2)

where AρM
(h̄ω) is the maximum amplitude of the local fluc-

tuation defined in the energetic range of multiple neighbor-

ing states and ρM,max is the maximal value of ρM, both of

which are evaluated at the same energy h̄ω [see the inset

of Fig. 4(b)]. To compensate the fluctuation, we increase

γext until ∂fρ/∂γext saturates at a minimum. In this way, we

determine the optimal value for γext, labeled γext,opt. For the

validation of the toy model and the numeric calculation of the

tunnel couplings of the SET, we used AρM
(h̄ω) in the energetic

interval of five neighboring energy levels after subtracting

the overall tendency of ρM approximated by a linear offset.

Determining γext,opt as described above, the numerical and

analytic densities of states coincide very well for the energy

used and a given number of sites N , as can be seen from

Fig. 4(c) for h̄ω = −2 with all states N taken into account.

Note that particularly for the model validation, fγ does not

include any information of the analytic solution.

2. Tunnel coupling

Now, we validate the calculation of the tunnel coupling tC
using the presented method on our 2D toy model. By using a

constant on-site potential V0 in system M + L, we calculate

the analytic solution of the tunnel coupling for an arbitrary

energy h̄ω to be

tC,analytic(h̄ω) = 2πw2ρM,analytic(h̄ω), (A3)

with w = 0.1 ensuring weak coupling of S to M + L. In the

following, we explicitly focus on a single energy level |s〉 in

subsystem S with energy ǫS and energy-conserving tunneling.

The computed relative tunnel couplings tC/tC,analytic are shown

for the two dependencies h̄ω = ǫs and N in Fig. 4(d). For

every point, fρ is minimized by γext,opt. By varying ǫs, the

numerical tunnel coupling differs from the analytic solution
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system S
system M
system L

w

(a) (b)

(c)

(d)

FIG. 4. (a) Schematic of the 2D tight-binding toy model with a single site coupled by the transition element w to a 2D lattice with N sites,

each coupled by the nearest-neighbor transition element t . (b) Comparison of the density of states for an infinite 2D lattice: numerical solution

using the wideband limit vs the analytic solution. For h̄ω ≈ 0, both solutions diverge due to the Van Hove singularity. Close to the band edge

with |h̄ω| ≈ 4t , the deviation between the analytic and numerical solutions increases. In the numerical simulation, the 2D lattice consists of

N = 1521 sites coupled by nearest-neighbor coupling with t = 1. (c) Density of states for a 2D lattice with jext,opt = 0.2 chosen with respect

to N = 1521 and h̄ω = ǫS = −2 for different calculated fractions n/N of the full solution of HM. By reducing the fraction of computed states

n/N , ρM,n<N deviates from theory. (d) Dependency of the numerical tunnel coupling tC and the optimal external decay γext,opt on system size

N of the 2D lattice and energy level ǫS of the single site. The single site is coupled by the transition element w = 0.1. The 2D lattice is defined

with N = 1521 and t = 1. Varying ǫS, the numerical tunnel couplings differ from the analytic solution up to an error of 3%, where γext,opt

shows a constant tendency. Varying N , the numerical tunnel couplings differ from the analytic solution up to an error of 6%. The external

decay γext,opt shows a decreasing tendency for increasing N .

with an error of up to 3% where γext,opt does not exhibit a clear

tendency over h̄ω = ǫs and varies only due to the varying local

fluctuation. For different system sizes N , the numerical tunnel

coupling differs from the analytic solution by an error of up

to 6% where γext,opt decreases for increasing system sizes

N . Since in a tight-binding model with system size N , there

are exactly N energy levels, the intrinsic energetic difference

between neighboring states decreases with increasing system

size, resulting in a decreasing γext,opt. With system size N >

103, the error may be reduced even further but might lead to

computational challenges.

APPENDIX B: TRANSFER TO LARGE SYSTEM SIZES

For large system sizes, e.g., in our realistic showcase with

N ≈ 105, solving the Schrödinger equation of the complete

system may exceed available computational resources. There-

fore, we discuss the influence of computing only n states

around ǫS of the total N states in subsystem M . The numerical

density of states for different fractions 0 < n/N � 1 is shown

in Fig. 4(c). For the full solution of the Schrödinger equa-

tion (n = N ), the analytic and numerical densities of states

coincide using γext,opt = 0.2 for ǫS = −2 and N = 1521. Due

to the external decay, the Van Hove singularity at h̄ω = 0 is

suppressed, and the band edges at |h̄ω| = 4t are smeared out.

Since the overlap of energetically far distant states is negligi-

ble, we compute only states within the energetic proximity of

ǫs. This reduces the required computational resources drasti-

cally. For lower fractions (here n/N < 50%), the numerical

density of states deviates from the analytic solution since we

neglect states which contribute to the density of states and

tunnel coupling at the energy ǫs. Like for fρ , we define an

additional quality indicator:

fn =
δEn

γm + γext

, (B1)

where we use the energetic interval δEn which is spanned

by these n computed states with respect to the broadening
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γm + γext of the states in close energetic proximity to ǫs. This

is shown for n/N = 50% in Fig. 4(c).

Within the validation, we explicitly focused on small sys-

tem sizes (N ≈ 103), leading especially to errors due to the

finite size of the system. For larger system sizes with N � 105

sites, this error is captured intrinsically, and small additional

external decay γext can be included to minimize fρ . On the

other hand, the second indicator in Eq. (B1) leads to a tremen-

dous reduction of computational resources dominated by the

dimension of HM,eff , while still ensuring reasonable results.
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