000861563 001__ 861563
000861563 005__ 20210130000851.0
000861563 0247_ $$2doi$$a10.1038/s41534-017-0038-y
000861563 0247_ $$2ISSN$$a1598-0634
000861563 0247_ $$2ISSN$$a2056-6387
000861563 0247_ $$2ISSN$$a2377-0058
000861563 0247_ $$2Handle$$a2128/21890
000861563 0247_ $$2WOS$$aWOS:000411013900001
000861563 0247_ $$2altmetric$$aaltmetric:14865243
000861563 037__ $$aFZJ-2019-02014
000861563 082__ $$a530
000861563 1001_ $$0P:(DE-HGF)0$$aVandersypen, L. M. K.$$b0$$eCorresponding author
000861563 245__ $$aInterfacing spin qubits in quantum dots and donors—hot, dense, and coherent
000861563 260__ $$aLondon$$bNature Publ. Group$$c2017
000861563 3367_ $$2DRIVER$$aarticle
000861563 3367_ $$2DataCite$$aOutput Types/Journal article
000861563 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1553237163_19103
000861563 3367_ $$2BibTeX$$aARTICLE
000861563 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861563 3367_ $$00$$2EndNote$$aJournal Article
000861563 520__ $$aSemiconductor spins are one of the few qubit realizations that remain a serious candidate for the implementation of large-scale quantum circuits. Excellent scalability is often argued for spin qubits defined by lithography and controlled via electrical signals, based on the success of conventional semiconductor integrated circuits. However, the wiring and interconnect requirements for quantum circuits are completely different from those for classical circuits, as individual direct current, pulsed and in some cases microwave control signals need to be routed from external sources to every qubit. This is further complicated by the requirement that these spin qubits currently operate at temperatures below 100 mK. Here, we review several strategies that are considered to address this crucial challenge in scaling quantum circuits based on electron spin qubits. Key assets of spin qubits include the potential to operate at 1 to 4 K, the high density of quantum dots or donors combined with possibilities to space them apart as needed, the extremely long-spin coherence times, and the rich options for integration with classical electronics based on the same technology.
000861563 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000861563 588__ $$aDataset connected to CrossRef
000861563 7001_ $$0P:(DE-Juel1)172019$$aBluhm, Hendrik$$b1
000861563 7001_ $$0P:(DE-HGF)0$$aClarke, J. S.$$b2
000861563 7001_ $$0P:(DE-HGF)0$$aDzurak, A. S.$$b3
000861563 7001_ $$0P:(DE-HGF)0$$aIshihara, R.$$b4
000861563 7001_ $$0P:(DE-HGF)0$$aMorello, A.$$b5
000861563 7001_ $$0P:(DE-HGF)0$$aReilly, D. J.$$b6
000861563 7001_ $$0P:(DE-Juel1)172641$$aSchreiber, L. R.$$b7
000861563 7001_ $$0P:(DE-HGF)0$$aVeldhorst, M.$$b8
000861563 773__ $$0PERI:(DE-600)2841736-7$$a10.1038/s41534-017-0038-y$$gVol. 3, no. 1, p. 34$$n1$$p34$$tnpj Quantum information$$v3$$x2056-6387$$y2017
000861563 8564_ $$uhttps://juser.fz-juelich.de/record/861563/files/s41534-017-0038-y.pdf$$yOpenAccess
000861563 8564_ $$uhttps://juser.fz-juelich.de/record/861563/files/s41534-017-0038-y.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000861563 909CO $$ooai:juser.fz-juelich.de:861563$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000861563 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172019$$aForschungszentrum Jülich$$b1$$kFZJ
000861563 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172641$$aForschungszentrum Jülich$$b7$$kFZJ
000861563 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000861563 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861563 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000861563 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNPJ QUANTUM INFORM : 2017
000861563 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNPJ QUANTUM INFORM : 2017
000861563 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000861563 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000861563 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861563 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861563 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000861563 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000861563 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000861563 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861563 920__ $$lyes
000861563 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
000861563 980__ $$ajournal
000861563 980__ $$aVDB
000861563 980__ $$aUNRESTRICTED
000861563 980__ $$aI:(DE-Juel1)PGI-11-20170113
000861563 9801_ $$aFullTexts