001     861563
005     20210130000851.0
024 7 _ |a 10.1038/s41534-017-0038-y
|2 doi
024 7 _ |a 1598-0634
|2 ISSN
024 7 _ |a 2056-6387
|2 ISSN
024 7 _ |a 2377-0058
|2 ISSN
024 7 _ |a 2128/21890
|2 Handle
024 7 _ |a WOS:000411013900001
|2 WOS
024 7 _ |a altmetric:14865243
|2 altmetric
037 _ _ |a FZJ-2019-02014
082 _ _ |a 530
100 1 _ |a Vandersypen, L. M. K.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent
260 _ _ |a London
|c 2017
|b Nature Publ. Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1553237163_19103
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Semiconductor spins are one of the few qubit realizations that remain a serious candidate for the implementation of large-scale quantum circuits. Excellent scalability is often argued for spin qubits defined by lithography and controlled via electrical signals, based on the success of conventional semiconductor integrated circuits. However, the wiring and interconnect requirements for quantum circuits are completely different from those for classical circuits, as individual direct current, pulsed and in some cases microwave control signals need to be routed from external sources to every qubit. This is further complicated by the requirement that these spin qubits currently operate at temperatures below 100 mK. Here, we review several strategies that are considered to address this crucial challenge in scaling quantum circuits based on electron spin qubits. Key assets of spin qubits include the potential to operate at 1 to 4 K, the high density of quantum dots or donors combined with possibilities to space them apart as needed, the extremely long-spin coherence times, and the rich options for integration with classical electronics based on the same technology.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bluhm, Hendrik
|0 P:(DE-Juel1)172019
|b 1
700 1 _ |a Clarke, J. S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Dzurak, A. S.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ishihara, R.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Morello, A.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Reilly, D. J.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Schreiber, L. R.
|0 P:(DE-Juel1)172641
|b 7
700 1 _ |a Veldhorst, M.
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1038/s41534-017-0038-y
|g Vol. 3, no. 1, p. 34
|0 PERI:(DE-600)2841736-7
|n 1
|p 34
|t npj Quantum information
|v 3
|y 2017
|x 2056-6387
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/861563/files/s41534-017-0038-y.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/861563/files/s41534-017-0038-y.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:861563
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172019
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)172641
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NPJ QUANTUM INFORM : 2017
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NPJ QUANTUM INFORM : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21