001     861592
005     20210131030916.0
024 7 _ |a 10.1029/2018WR024072
|2 doi
024 7 _ |a 0043-1397
|2 ISSN
024 7 _ |a 0148-0227
|2 ISSN
024 7 _ |a 1944-7973
|2 ISSN
024 7 _ |a 2156-2202
|2 ISSN
024 7 _ |a 2128/22230
|2 Handle
024 7 _ |a WOS:000468597900022
|2 WOS
024 7 _ |a altmetric:61406446
|2 altmetric
037 _ _ |a FZJ-2019-02042
082 _ _ |a 550
100 1 _ |a Groh, J.
|0 P:(DE-Juel1)158034
|b 0
|e Corresponding author
245 _ _ |a Quantification and prediction of nighttime evapotranspiration for two distinct grassland ecosystems
260 _ _ |a [New York]
|c 2019
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1559042299_31637
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Evapotranspiration (ET) is, after precipitation, the second largest flux at the land surface in the water cycle and occurs mainly during daytime. Less attention has been given to water fluxes from the land surface into the atmosphere during nighttime (i.e., between sunset and sunrise). The nighttime ET (ETN) may be estimated based on models that use meteorological data; however, due to missing experimental long‐term data, the verification of ETN estimates is limited. In this paper, the amount of ETN for two grassland ecosystems was determined from highly temporally resolved and precise weighing lysimeter data. We found that annual ETN ranged between 3.5% and 9.5% of daytime annual ET (ETD) and occurred mainly during wet soil and canopy surface conditions, which suggests that ETN is largely related to evaporation. ETN was positively correlated with wind speed. Dew formation, ranging from 4.8% to 6.4% of annual precipitation, was in absolute terms larger than ETN. The prediction of ETN with the Penman‐Monteith model improved if the aerodynamic and surface resistance parameters were based on vegetation height observations and the nighttime stomatal resistance parameter was assumed to be zero. The occurrence of hot days during the observation period showed to increase average ETN rates. Our results suggest that ETN can be observed with precision weighing lysimeters, was a not negligible component in the water balance of the grassland ecosystems, and thus needs more attention when simulating land surface hydrological processes.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Pütz, Thomas
|0 P:(DE-Juel1)129523
|b 1
|u fzj
700 1 _ |a Gerke, H. H.
|0 0000-0002-6232-7688
|b 2
700 1 _ |a Vanderborght, J.
|0 P:(DE-Juel1)129548
|b 3
700 1 _ |a Vereecken, H.
|0 P:(DE-Juel1)129549
|b 4
773 _ _ |a 10.1029/2018WR024072
|g p. 2018WR024072
|0 PERI:(DE-600)2029553-4
|n 4
|p 2961-2975
|t Water resources research
|v 55
|y 2019
|x 1944-7973
856 4 _ |y Published on 2019-03-21. Available in OpenAccess from 2019-09-21.
|u https://juser.fz-juelich.de/record/861592/files/Groh_et_al-2019-Water_Resources_Research-1.pdf
856 4 _ |y Published on 2019-03-21. Available in OpenAccess from 2019-09-21.
|x pdfa
|u https://juser.fz-juelich.de/record/861592/files/Groh_et_al-2019-Water_Resources_Research-1.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:861592
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)158034
910 1 _ |a Leibniz-Center for Agriculture Landscape Research (ZALF)
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)158034
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129523
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b WATER RESOUR RES : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21