000861599 001__ 861599
000861599 005__ 20230426083207.0
000861599 0247_ $$2doi$$a10.1103/PhysRevB.95.075417
000861599 0247_ $$2ISSN$$a0163-1829
000861599 0247_ $$2ISSN$$a0556-2805
000861599 0247_ $$2ISSN$$a1050-2947
000861599 0247_ $$2ISSN$$a1094-1622
000861599 0247_ $$2ISSN$$a1095-3795
000861599 0247_ $$2ISSN$$a1098-0121
000861599 0247_ $$2ISSN$$a1538-4489
000861599 0247_ $$2ISSN$$a1550-235X
000861599 0247_ $$2ISSN$$a2469-9950
000861599 0247_ $$2ISSN$$a2469-9969
000861599 0247_ $$2Handle$$a2128/21895
000861599 0247_ $$2WOS$$aWOS:000393852500002
000861599 0247_ $$2altmetric$$aaltmetric:14840816
000861599 037__ $$aFZJ-2019-02049
000861599 082__ $$a530
000861599 1001_ $$0P:(DE-HGF)0$$aEriksson, Erik$$b0
000861599 245__ $$aTopological transconductance quantization in a four-terminal Josephson junction
000861599 260__ $$aWoodbury, NY$$bInst.$$c2017
000861599 3367_ $$2DRIVER$$aarticle
000861599 3367_ $$2DataCite$$aOutput Types/Journal article
000861599 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1553601496_24179
000861599 3367_ $$2BibTeX$$aARTICLE
000861599 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861599 3367_ $$00$$2EndNote$$aJournal Article
000861599 520__ $$aRecently we predicted that the Andreev bound-state spectrum of four-terminal Josephson junctions may possess topologically protected zero-energy Weyl singularities, which manifest themselves in a quantized transconductance in units of 4e2/h when two of the terminals are voltage biased [R.-P. Riwar, M. Houzet, J. S. Meyer, and Y. V. Nazarov, Nature Commun. 7, 11167 (2016)]. Here, using the Landauer-Büttiker scattering theory, we compute numerically the currents flowing through such a structure in order to assess the conditions for observing this effect. We show that the voltage below which the transconductance becomes quantized is determined by the interplay of nonadiabatic transitions between Andreev bound states and inelastic relaxation processes. We demonstrate that the topological quantization of the transconductance can be observed at voltages of the order of 10−2Δ/e,Δ being the the superconducting gap in the leads.
000861599 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000861599 542__ $$2Crossref$$i2017-02-14$$uhttp://link.aps.org/licenses/aps-default-license
000861599 588__ $$aDataset connected to CrossRef
000861599 7001_ $$0P:(DE-Juel1)168366$$aRiwar, Roman$$b1$$eCorresponding author$$ufzj
000861599 7001_ $$0P:(DE-HGF)0$$aHouzet, Manuel$$b2
000861599 7001_ $$0P:(DE-HGF)0$$aMeyer, Julia S.$$b3
000861599 7001_ $$0P:(DE-HGF)0$$aNazarov, Yuli V.$$b4
000861599 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.95.075417$$bAmerican Physical Society (APS)$$d2017-02-14$$n7$$p075417$$tPhysical Review B$$v95$$x2469-9950$$y2017
000861599 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.95.075417$$gVol. 95, no. 7, p. 075417$$n7$$p075417$$tPhysical review / B$$v95$$x2469-9950$$y2017
000861599 8564_ $$uhttps://juser.fz-juelich.de/record/861599/files/PhysRevB.95.075417.pdf$$yOpenAccess
000861599 8564_ $$uhttps://juser.fz-juelich.de/record/861599/files/PhysRevB.95.075417.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000861599 909CO $$ooai:juser.fz-juelich.de:861599$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000861599 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168366$$aForschungszentrum Jülich$$b1$$kFZJ
000861599 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000861599 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861599 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000861599 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000861599 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2017
000861599 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861599 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000861599 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861599 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000861599 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000861599 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000861599 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000861599 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861599 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861599 920__ $$lyes
000861599 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000861599 980__ $$ajournal
000861599 980__ $$aVDB
000861599 980__ $$aUNRESTRICTED
000861599 980__ $$aI:(DE-Juel1)PGI-2-20110106
000861599 9801_ $$aFullTexts
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.82.3045
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.83.1057
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.52.365
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aaa9297
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevX.5.031013
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aaa9273
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.49.405
000861599 999C5 $$1B. A. Bernevig$$2Crossref$$9-- missing cx lookup --$$a10.1515/9781400846733$$y2013
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1070/1063-7869/44/10S/S29
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.79.161408
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys2429
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.crhy.2013.10.008
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.020501
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.155450
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.205409
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms11167
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.155437
000861599 999C5 $$1E. Strambini$$2Crossref$$9-- missing cx lookup --$$a10.1038/nnano.2016.157$$p1055 -$$tNature Nanotechnology$$v11$$y2016
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.95.045411
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0378-4363(82)90189-9
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.75.1831
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.74.2110
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.54.7366
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.67.3836
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(81)90361-8
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.41.1509
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.75.174513
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.060517
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.214501
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.075401
000861599 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physe.2015.10.031