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Recently we predicted that the Andreev bound-state spectrum of four-terminal Josephson junctions may

possess topologically protected zero-energy Weyl singularities, which manifest themselves in a quantized

transconductance in units of 4e2/h when two of the terminals are voltage biased [R.-P. Riwar, M. Houzet,

J. S. Meyer, and Y. V. Nazarov, Nature Commun. 7, 11167 (2016)]. Here, using the Landauer-Büttiker

scattering theory, we compute numerically the currents flowing through such a structure in order to assess

the conditions for observing this effect. We show that the voltage below which the transconductance becomes

quantized is determined by the interplay of nonadiabatic transitions between Andreev bound states and

inelastic relaxation processes. We demonstrate that the topological quantization of the transconductance

can be observed at voltages of the order of 10−2�/e, � being the the superconducting gap in the

leads.

DOI: 10.1103/PhysRevB.95.075417

I. INTRODUCTION

Topological phases of matter have attracted much interest

in recent years [1,2]. Starting with gapped phases such as

topological insulators and superconductors, more recently

gapless topological phases possessing topologically protected

band crossings have been discovered [3–6]. The topological

properties of these systems are determined by their band

structure and in particular the variation of the wave functions

throughout the Brillouin zone [7,8]. Realizing topological

phases is not an easy task and relies on finding the appropriate

materials or combining different materials to engineer the

required band structure.

Josephson junctions are a tool to probe topological prop-

erties [9–13], and they may possess interesting topological

properties themselves [14–20]. As some of us have pointed

out recently [17], multiterminal Josephson junctions present

an alternative to engineering topological materials. Josephson

junctions host Andreev bound states (ABS) localized at the

junction and the energy of which is below the gap for the

excitations in the leads. The spectrum of these ABS depends

on the properties, both of the superconducting leads and the

scattering region that connects them. The ABS energy is a

function of the phase differences between the superconducting

leads, which can be viewed as the quasimomenta of the ABS

“band structure”. This allows one to make an analogy between

n-terminal junctions and (n − 1)-dimensional materials. We

showed that the ABS spectrum of four-terminal junctions

made with conventional superconductors may possess Weyl

singularities, corresponding to topologically protected zero-

energy states. These Weyl singularities carry a topological

charge ±1. As a consequence the ABS pseudo-band-structure

as a function of two phase differences may possess a nonzero

Chern number. We further showed that this nonzero Chern

number leads to a quantized transconductance between two

voltage-biased terminals.

The present paper addresses the observability of this

quantized transconductance in a transport experiment. The

quantized transconductance is associated with adiabatic trans-

port at fixed occupation of the ABS. On the other hand, a

bias voltage is known to lead to multiple Andreev reflections

[21–24], where a quasiparticle can be transferred from the

occupied states below the superconducting gap to the empty

states above the superconducting gap, leading to a dissipative

current. At low bias, these processes may alternatively be

described as resulting from Landau-Zener transitions between

Andreev bound states [22]. Here we compute the currents

taking into account these processes in order to establish the

voltage regime, where a quantized transconductance can be

observed. We find four different voltage regimes. At large

voltages, the conductances are given by their normal-state

values. Decreasing the voltage, multiple Andreev reflections

lead to a complicated voltage dependence with pronounced

subgap features. Further decreasing the voltage, a competition

between Landau-Zener transitions and inelastic relaxation,

which is modeled by an imaginary energy shift, takes place.

Finally, at the lowest voltages, the dissipation vanishes and the

transconductances reach their quantized values.

The outline of the paper is the following. In Sec. II, we

provide the description of the Andreev spectrum and the

topological properties of zero-energy states in a four-terminal

Josephson junction through a time-reversal invariant normal

region contacted to each superconducting terminal through

a single channel. We illustrate the results with a random

symmetric scattering matrix describing the normal-state prop-

erties of the junction (results for another one are given in the

Appendices). In Sec. III, we compute numerically the currents

flowing through the voltage-biased junction within the scat-

tering theory for out-of-equilibrium superconducting hybrid

structures. In Sec. IV, we discuss the conditions for the ob-

servability of the transconductance quantization between two

voltage-biased terminals. Our conclusions are given in Sec. V.
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FIG. 1. Sketch of a four-terminal Josephson junction. The

normal-state scattering region connecting the four leads is described

by the scattering matrix Ŝ. For the transconductance measurement,

leads one and two are voltage biased with voltages V1 and V2,

respectively. The other two leads, lead zero and lead three, are

connected into a loop, such that the phase difference φ0 − φ3 can

be controlled by a magnetic flux through that loop. Gauge invariance

allows us to choose φ3 = 0. We compute the outgoing currents into

all four leads.

II. TOPOLOGICAL CHARACTERIZATION

OF THE ANDREEV SPECTRUM

A. Generalities

We are considering a four-terminal Josephson junction, the

setup of which is shown in Fig. 1. The superconducting leads

are labeled by α = 0,1,2,3. To perform a transconductance

measurement, two of the leads, here lead one and lead two,

have to be voltage biased, whereas the phase difference

between the other two leads, here lead zero and lead three,

has to be fixed, which can be achieved by connecting them

into a loop that is threaded by a magnetic flux (see Fig. 1). The

superconducting gap � is assumed to be the same for all leads.

Their phases are given by φ0,φ1,φ2,φ3, where gauge invariance

allows us to put φ3 = 0. The leads are connected through a

short normal region characterized by an energy-independent

(unitary) scattering matrix Ŝ for electrons. We further assume

spin rotation as well as time-reversal symmetry in the normal

region, such that Ŝ is spin independent and Ŝ = ŜT . Thus Ŝ

belongs to the circular orthogonal ensemble (COE). We further

restrict ourselves to junctions having one transmitting channel

per terminal, such that Ŝ is a 4 × 4 matrix.

The spectrum of ABS with energy E (|E| < �) in the

junction is obtained by solving the eigenproblem [25]

ψeα(E) =
∑

β

a(E)Sαβeiφβ ψhβ(E), (1a)

ψhα(E) =
∑

β

a(E)S∗
αβe−iφβ ψeβ(E). (1b)

Here, ψeα and ψhα are electron and hole outgoing wave

functions from the normal region to lead α, respectively,

and a(E) = E/� − i
√

1 − (E/�)2 is the Andreev reflection

amplitude. Then, for each set of phases, Eq. (1) admits for four

solutions at energies ±E1 and ±E2 (with 0 � E1 � E2 � �),

which are pairwise opposite due to the built-in particle-hole

symmetry in the theory of superconductivity.

According to Ref. [17], scattering matrices drawn out

of the COE can admit for zero-energy Weyl points in the

ABS spectrum. These Weyl points correspond to topologically

protected crossings of the two solutions with energies ±E1 in

the (φ0,φ1,φ2) space of superconducting phases. Each crossing

is characterized by a topological charge Q = ±1, where

Q =
1

2π

∫

S

dS · B. (2)

Here, S is a surface in the (φ0,φ1,φ2) space that encloses the

Weyl point, dS is an element of that surface, and

B ≡ (B0,B1,B2) = i

3
∑

α=0

∂ψ∗
eα × ∂ψeα, (3)

where ∂ = (∂φ0
,∂φ1

,∂φ2
) is the Berry curvature associated with

a normalized eigenstate with energy −E1 (with
∑

α |ψeα|2 =

1). Time-reversal symmetry, together with the fermion-

doubling theorem [26], imposes that the Weyl points appear

in groups of four: there are two Weyl points of a given

charge at ±(φ
(1)
0 ,φ

(1)
1 ,φ

(1)
2 ), as well as two Weyl points of

the opposite charge at ±(φ
(2)
0 ,φ

(2)
1 ,φ

(2)
2 ). For definiteness, we

chose 0 � φ
(1)
0 � φ

(2)
0 � π . For phases φ0 �= φ

(i)
0 , the Andreev

spectrum is gapped in the entire (φ1,φ2) plane.

Subsequently, we define a (topological) Chern number in

the (φ1,φ2) plane:

C12(φ0) = −C21(φ0)

=
1

2π

∫ π

−π

dφ1

∫ π

−π

dφ2 B0(φ0,φ1,φ2). (4)

At φ0 = 0, the setup is effectively a three-terminal junction,

which does not admit for topologically protected crossings

[17]. Time-reversal symmetry imposes that the Chern number

C12(φ0 = 0) = 0. Increasing the phase φ0, the Chern number

changes when crossing φ
(i)
0 by the charge of the corresponding

Weyl point. Thus, we deduce that C12(φ0) = 0 in the regions

0 < φ0 < φ
(1)
0 and φ

(2)
0 < φ0 < π , while it takes a value 1 or

−1 in the intermediate region φ
(1)
0 < φ0 < φ

(2)
0 . Furthermore,

C12(−φ0) = −C12(φ0).

According to adiabatic perturbation theory [17], the

Chern number determines the transconductance between two-

voltage-biased terminals one and two, G12 = −(4e2/h)C12, at

sufficiently low voltage biases. To probe the transconductance

quantization beyond the adiabatic regime, we will perform a

numerical calculation of the current at arbitrary voltages for

two specific setups (cf. Sec. III and the Appendices). Below we

motivate our choice for the two different scattering matrices

describing these setups.
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B. Examples

To obtain systems with Weyl points, we generate random

symmetric scattering matrices Ŝ within COE. This is done

by first generating random Hermitian matrices H from the

Gaussian unitary ensemble, and then forming Ŝ = UT U ,

where U is the unitary matrix that diagonalizes H , i.e.,

H = U †DU with D a real diagonal matrix. Around 5% of

these matrices admit for Weyl points.

To observe the topological quantization of the transcon-

ductance, it is favorable to have a large gap in the Andreev

spectrum between the Weyl points. Thus, for each scattering

matrix with Weyl points, we determine the largest possible

gap in the (φ1,φ2) plane for all φ0 in between the Weyl points:

Eg = max
φ

(1)
0 <φ0<φ

(2)
0

min
φ1,φ2

E1(φ0,φ1,φ2). (5)

Furthermore, we do the same for all the remaining φ0 in the

intervals 0 < φ0 < φ
(1)
0 and φ

(2)
0 < φ0 < π . A histogram of the

smallest of these maximal gaps for an ensemble of topological

scattering matrices is shown in Appendix A. We do not find

any gap larger than around E = 0.12�. For our simulation,

we choose a topological scattering matrix with a gap close to

that value.

Specifically, we use the matrix

Ŝ1 =







0.299 + i0.091 −0.547 − i0.171 −0.190 − i0.474 −0.543 − i0.140

−0.547 − i0.171 0.271 + i0.306 −0.334 − i0.182 −0.288 − i0.527

−0.190 − i0.474 −0.334 − i0.182 0.348 + i0.565 −0.369 − i0.140

−0.543 − i0.140 −0.288 − i0.527 −0.369 − i0.140 0.317 + i0.263






, (6)

which has four Weyl points at (φ0,φ1,φ2) = ±(1.72,

−1.89,−2.82), with charge −1, and (φ0,φ1,φ2) = ±(2.66,

−1.84,1.01), with charge +1. Taking φ0 as a control parameter,

its maximal gap in the (φ1,φ2) plane for φ0 in between the

two Weyl points is E = 0.11� and is realized at φ0 = ±2.21.

See Fig. 2 for some examples of the ABS spectrum of the

four-terminal setup.

In Appendix C, we show results for a second scattering

matrix, which has a smaller gap in between its Weyl points.

Note that a quantization of the transconductance is also ex-

pected in multichannel junctions. In fact, as shown in Ref. [17],

the probability of realizing Weyl points is greatly increased in

that case. However, as the number of Andreev bound states at

the junction increases with the number of channels, the gap

in the spectrum in between Weyl points is likely to decrease,

making the observation of a quantized transconductance more

difficult. Similar considerations also apply to junctions with

more than four leads, where the transconductance between

two voltage-biased leads is predicted to be quantized when

the phase differences between all the other leads are kept

fixed [17]. Therefore, we concentrate here on the four-terminal,

single channel case.

FIG. 2. Cuts through the Andreev bound-state spectrum for the

scattering matrix Ŝ1. From left to right: At phase φ0 = 1.72 (Weyl

point), at phase φ0 = 2.21 where the gap is the largest within the

topological region (E = 0.11�), and at phase φ0 = 2.66 (Weyl

point). The spectra are along the lines (φ1 = χ,φ2 = 3χ + φ), where

the phase shift φ is chosen such that the cut goes through the point in

the (φ1,φ2) plane with the smallest gap.

III. CURRENT-VOLTAGE CHARACTERISTICS

In this section we use the Landauer-Büttiker scattering

formalism extended to superconducting hybrid structures to

calculate the currents flowing through the setup at arbitrary

voltage biases [22]. We compare the numerical results with the

prediction of the transconductance quantization at sufficiently

low voltages.

A. Formalism

To obtain the transconductances G12 and G21, we need to

voltage-bias leads one and two. We will consider that they

are voltage biased with commensurate voltages V1 = n1V

and V2 = n2V (n1,n2 integers), while V0 = V3 = 0. The dc

currents flowing to the leads also depend on the phase bias

φ0, as well as on a phase shift φ between the time-dependent

phases, φ1(t) = 2eV1t and φ2(t) = 2eV2t + φ (with e > 0).

They are given by (below we set h̄ = kB = 1, unless they are

explicitly written out)

Iα = IN
α −

e

2π

∫

dE J 2(E) tanh
E

2T

×







2Re
[

a(E)ψαE
h,α(E)

]

+
∑

β,k

(|ak(E)|2 + 1)

×
(
∣

∣ψ
βE

hα (E + keV )
∣

∣

2
−

∣

∣ψβE
eα (E + keV )

∣

∣

2)







, (7)

where IN
α = (2e2/h)

∑

β |Sαβ |2(Vβ − Vα) is the normal-state

current, T is the temperature, J (E) =
√

1 − |a(E)|2,

and ak(E) = a(E + keV ). Here a(E) = [E + iŴ −

i
√

�2 − (E + iŴ)2]/� generalizes the Andreev reflection

amplitude to energies below and above the gap. It includes

a phenomenological broadening parameter Ŵ, also known as

Dynes parameter (see below) [27]. The outgoing electron and

hole wave functions in lead α associated with an incoming

electronlike state from lead β and with energy E are given by
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the set of equations

ψβE
eα (E + keV ) =

∑

γ

ei(φα−φγ )/2Sαγ

[

ak(E − nγ eV + nαeV )ψ
βE

hγ (E + keV − nγ eV + nαeV ) + δβ,γ δk,nγ −nα

]

, (8a)

ψ
βE

hα (E + keV ) =
∑

γ

ei(−φα+φγ )/2S∗
αγ ak(E + nγ eV − nαeV )ψβE

eγ (E + keV + nγ eV − nαeV ), (8b)

which take into account inelastic-scattering processes due to

voltage biases. Here n0 = n3 = 0, φ1 = φ3 = 0, and φ2 = φ.

The Dynes parameter generates a finite density of states

at all energies below �, ν(E) = ν0Re{[1 + a2(E)]/[1 −

a2(E)]}, where ν0 is the density of states in the normal state.

In particular, ν(E ≪ �) ≃ ν0Ŵ/� at Ŵ ≪ �. Thus it admits

for inelastic relaxation of subgap states within the junction by

coupling them with the small density of states in the leads.

By contrast, when Ŵ = 0, quasiparticles can only relax their

energy after performing successive Andreev reflections in the

subgap region until they reach �.

Note that topological conductance quantization has been

predicted for incommensurate voltages [17]. As we work with

commensurate voltages, the currents contain a Josephson-like

contribution that depends periodically on the phase shift φ

between the voltage-biased leads. This contribution has a small

amplitude for commensurability ratios n1/n2 different from 1

(see Fig. 8) and would vanish for incommensurate voltage

biases. To extract the φ-independent part of the currents, we

perform an average of the currents of Eq. (7) over the phase

shift φ.

The solution of the coupled Eqs. (8) is implemented

numerically as a matrix equation problem, making use of

PYTHON’s scipy.linalg library (the solve_banded algorithm

for solving a matrix equation with a sparse banded matrix).

From the obtained wave functions, the currents are computed

by the integration over energy in Eq. (7). For the integration we

use direct summation over energies −3� � E � 3�, with a

sampling distance dE = 0.2eV . The computation time scales

as ∼V −2. At voltage V = 0.007�/e and fixed φ0, computing

all the currents for a single phase shift φ takes around 4 h on a

single CPU. Although the time can be reduced by parallelizing

the integration over energy in Eq. (7), and the averaging over

phase shifts (in practice, ten equidistant phase shifts were

sufficient to perform that average), this still limits the voltage

range that we are able to efficiently probe.

In the next subsection, we show the numerical results for the

scattering matrix Ŝ1, Eq. (6). Results for a different scattering

matrix Ŝ2 are shown in Appendix C.

B. Results

In Fig. 3 we show the I − V curves for the four-terminal

setup with scattering matrix Ŝ1 and a Dynes parameter Ŵ =

0.002�. To extract the transconductances, we use two sets of

values (n1,n2). Shown in the figure are the I − V curves using

(n1 = 2,n2 = 3) and two different values of the phase bias φ0.

Note that the currents I1 and I2 have to tend to zero as voltage

tends to zero. By contrast, a Josephson current may circulate

in the ring between leads zero and three at nonzero φ0. This is

seen in the top panel of Fig. 3, where I3 tends to −I0 �= 0 as

the voltage tends to zero.

From the computed currents Iα for the two sets of voltage

biases, we obtain the conductance matrix Ĝ, defined as

Iα =
∑

β GαβVβ , for φ0 = 0 (trivial region) and φ0 = 2.21

(topological region). Its elements as a function of voltage

V are shown in Fig. 4. At very low voltages, the direct

conductances vanish, while the transconductances become

quantized, Gαβ = −(4e2/h)Cαβ . We now fix the voltage to

a value small enough to observe conductance quantization and

vary the control parameter φ0. In Fig. 5, the dependence of the

transconductance as a function of φ0 is shown for two different

FIG. 3. The currents I0,I1,I2,I3 as function of voltage for the

scattering matrix Ŝ1. The voltages in terminals one and two are given

as V1 = 2V and V2 = 3V , respectively. The Dynes parameter is set

to Ŵ = 0.002�. Top: At phase φ0 = 2.21 in the topological region.

Bottom: At phase φ0 = 0 in the trivial region. We have used an

average over N = 10 phase shifts φ. The insets show a larger range

of voltages.
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FIG. 4. The conductances G12,G21,G11, and G22 between the

voltage-biased leads one and two as a function of voltage in

logarithmic scale. The conductances are obtained from the currents

shown in Fig. 3 and a similar set is obtained with a different

voltage ratio, V1 = V and V2 = 3V . Top: At phase φ0 = 2.21 in

the topological region. Bottom: At phase φ0 = 0 in the trivial region.

The expected quantization of the transconductance is seen for voltages

eV/� � 0.01.

voltages. We see that the transconductance quantization holds

for φ0 not too close to the values ±φ
(1)
0 ,±φ

(2)
0 , where the

topological transitions take place.

To help interpreting the results, we compute the dissipation

of the system as a function of voltage, defined as P ≡
∑

α IαVα . Using the two sets of voltages, we also compute

the chirality, defined as

C ≡

(

h

8e2

)

I ′
1V1 − I1V

′
1 + I ′

2V2 − I2V
′

2

V1V
′

2 − V2V
′

1

(9)

when V0 = V3 = 0. Here the primed variables are computed

using the set n1 = 2,n2 = 3 and the unprimed variables are

computed using n1 = 1,n2 = 3. The chirality selects the anti-

symmetric part of the conductance matrix. In a linear-response

regime, it reduces to C = (h/8e2)(G12 − G21). In particular,

in the presence of time-reversal symmetry, it vanishes in the

FIG. 5. Conductances as a function of phase φ0 at fixed volt-

age. Top: V = 0.005�/e. Bottom: V = 0.003�/e. The quantized

conductance plateaus are clearly visible. Around the topological

transitions at ±φ
(1)
0 = ±1.72 and ±φ

(2)
0 = ±2.66, conductance quan-

tization breaks down because the gap closes and dissipation becomes

large.

normal state. In Fig. 6, we plot the chirality C as a function of

voltage for the same structure as in Figs. 3 and 4, together with

the normalized dissipation P/PN , where PN ≡
∑

α IN
α Vα is

the normal-state dissipation.

IV. DISCUSSION

The adiabatic perturbation theory that was used in Ref. [17]

to predict the transconductance quantization requires the

Andreev levels to retain their equilibrium occupations. In

that regime, direct conductances vanish. On the other hand,

FIG. 6. Dissipation P/PN (dashed lines) and chirality C (solid

lines) as a function of voltage in logarithmic scale. Green curves

correspond to V1 = 2V,V2 = 3V and red curves correspond to V1 =

V,V2 = 3V . Top: At phase φ0 = 2.21 in the topological region. The

chirality tends to 1 as the dissipation tends to zero at low enough

voltages. Bottom: At phase φ0 = 0 in the trivial region.
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FIG. 7. To observe the quantization of the transconductance, it

is favorable to have (φ1,φ2) planes with a large spectral gap both in

the topological and the trivial region. Here we show a histogram of

the smaller of the maximal gaps in these two regions for 500 random

scattering matrices with Weyl points.

multiple Andreev reflections allow for quasiparticle transfer

between the leads by overcoming the energy gap 2�. Thus,

they result in charge transport at subgap voltages. At low

voltages, these multiple Andreev reflections can be related with

nonadiabatic transitions of quasiparticles occupying different

branches of the Andreev spectrum as the phases increase

linearly with time due to the voltage biases. Therefore the

two regimes described above are competing. We expect that

the transconductance quantization holds provided that an

inelastic-scattering process restores equilibrium occupation

of the subgap states while suppressing multiple Andreev

reflections. The Dynes parameter Ŵ provides such a mech-

anism, while essentially preserving the superconducting gap if

Ŵ ≪ �. Increasing Ŵ would help equilibration, but at the same

time introduce additional dissipation, which is detrimental to

observing transconductance quantization.

In Fig. 4 showing the conductance as a function of voltage,

we can distinguish four different voltage regimes.

We see that, for high voltages V ≫ �/e, the conductance

matrix elements match their normal-state values, GN
αβ =

(2e2/h)(|Sαβ |2 − δαβ). (Note that GN
αα < 0 and GN

α �=β > 0

due to the chosen conventions for the current directions.) In

particular, GN
11 = −0.42 × (4e2/h), GN

22 = −0.28 × (4e2/h),

and GN
12 = GN

21 = 0.07 × (4e2/h), corresponding to C = 0

(cf. Figs. 4 and 6).

At lower voltages, 0.1�/e � V � 2�/e, we observe a

complex dependence of the direct conductances as well as the

transconductances, with resonant features that are related with

multiple Andreev reflections involving various leads [28–33].

At even lower voltages, V � 0.1�/e, the interplay between

Landau-Zener transitions and inelastic relaxation becomes

important. If Ŵ is larger than the Landau-Zener transition rate

between the states with energy −E1 and E1, it restores the

equilibrium occupations, where the state with energy −E1 is

occupied and the state with E1 is empty, throughout most of

the time evolution.

Thus, at very low voltages, V � 0.01�/e, the direct

conductances vanish, while the transconductances become

quantized, Gαβ = −(4e2/h)Cαβ . Namely, for φ0 = 0 (trivial

region), G12 = −G21 = 0 and, for φ0 = 2.21 (topological

region), G12 = −G21 = 4e2/h.

The Landau-Zener transition rate at an avoided crossing

between the two states is given as ŴLZ = peV/π with

p = exp[−πE2
g/v]. Here Eg = E(t∗) and v = ∂E/∂t(t ≫ t∗)

for E(t) = E1(φ0,2n1eV t,2n2eV t + φ) having an avoided

crossing at t∗. From the central panel of Fig. 2, which shows

the cut in the plane of phases (φ1,φ2) going through the

minimal gap, we extract Eg = 0.11� and v ∼ eV � for the

scattering matrix Ŝ1. Using these values, our estimate for

the Landau-Zener transition rate becomes ŴLZ ≈ Ŵ = 0.002

at V ≈ 0.02�/e, which is in good agreement with the voltage

where one starts to see low dissipation and the quantization of

the transconductance (cf. Figs. 4 and 6).

When approaching the Weyl points, the gap in the (φ1,φ2)

plane decreases. Thus, the voltage V ∗ below which conduc-

tance quantization can be observed decreases as well. As

shown in Fig. 5, at fixed voltage, we see a peak in the direct

conductances around the Weyl points signaling that dissipation

is large (see also Fig. 9 in Appendix B). The smaller the

FIG. 8. Dependence of the currents on the phase shift φ. Here φ0 = 2.21, Ŵ = 0.002�, and V = 0.005�/e. Left: φ1 = eV t,φ2 = 3eV t + φ.

Right: φ1 = 2eV t,φ2 = 3eV t + φ. We see that already 10 phase shifts give a rather good sampling.
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voltage, the more one can approach the Weyl points without

losing the transconductance quantization.

V. CONCLUSION

It has recently been predicted that multiterminal Josephson

junctions may realize a novel type of topological matter [17].

Namely, for n � 4 terminals, Weyl singularities may appear in

the Andreev bound-state spectrum of the junction, giving rise

to topological transitions as the superconducting phases are

tuned. These transitions are observable as quantized jumps in

the transconductance between two voltage-biased terminals.

In this paper, we have studied this effect by numerically

solving the Landauer-Büttiker scattering theory for a four-

terminal Josephson junction, which describes the quasiparticle

transfer between the leads by the process of multiple Andreev

reflection in the subgap regime. We have observed how the

transconductances approach the quantized values predicted

by the topology at low voltages, when dissipation is small.

Tuning the superconducting phase at a fixed voltage, the

topological transitions could be clearly seen. Our results

provide an important step towards the clarification of the

experimental conditions to observe the topological properties

of multiterminal Josephson junctions.
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APPENDIX A: STATISTICS OF THE LARGEST POSSIBLE

SPECTRAL GAPS FOR RANDOM SCATTERING

MATRICES WITH WEYL POINTS

In order to find suitable scattering matrices for our nu-

merical investigation, we analyzed an ensemble of random

scattering matrices. In particular, we searched for the largest

possible gap in the (φ1,φ2) plane, both in the topologically

trivial and the topologically nontrivial regime. A histogram

of the smaller of these maximal gaps in the two regions for

an ensemble of topological scattering matrices is shown in

Fig. 7. For our simulation, we choose two different topological

scattering matrices: matrix Ŝ1, for which results are presented

in the main text, with a gap close to the largest value we

could obtain, and matrix Ŝ2, for which results are presented in

Appendix C, with a more typical gap.

FIG. 9. Dissipation and chirality as a function of phase φ0 at fixed

voltage V = 0.003�/e. The two curves for dissipation correspond

to two sets of voltages V1 = n1V,V2 = n2V .

APPENDIX B: ADDITIONAL RESULTS FOR THE

SCATTERING MATRIX Ŝ1

To obtain the results presented in the main part, we averaged

the currents over the phase offset φ between the phases of the

leads one and two. As shown in Fig. 8, the dependence of the

currents on φ is weak and smooth, justifying this procedure.

To observe the quantization of the transconductance,

transport has to be quasiadiabatic, i.e., dissipation has to be

low. Close to the Weyl points, the gap around the Fermi level

becomes very small and this breaks down. The dissipation as a

function of the control parameter φ0 is shown in Fig. 9. Large

peaks at the positions of the Weyl points are clearly visible.

We also show the chirality C that is expected to be zero in

the trivial region and ±1 in the topological region. Due to the

large dissipation, it deviates from these values in the vicinity

of the Weyl points.

APPENDIX C: SCATTERING MATRIX Ŝ2

The results presented in the main text were obtained for

a scattering matrix that yields a particularly large gap in

the topological region. As can be seen from Fig. 7, typical

scattering matrices yield a smaller gap. In this section we

make use of a second scattering matrix that is more typical:

Ŝ2 =







0.108 − i0.144 0.180 − i0.119 0.185 − i0.590 0.734 + i0.015

0.180 − i0.119 0.151 + i0.234 −0.362 − i0.634 −0.4750 + i0.341

0.1852 − i0.590 −0.362 − i0.634 0.145 − i0.009 −0.204 + i0.146

0.734 + i0.015 −0.475 + i0.341 −0.204 + i0.146 0.236 − i0.022






. (C1)

Here the Weyl points are at ±(1.74,−1.07,−2.82), with charge

+1, and ±(2.50,3.02,−0.73), with charge −1. The gap in the

topological region is largest in the planes at φ0 = ±2.16, where

E = 0.05�.
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FIG. 10. The currents I0,I1,I2,I3 as function of voltage for the scattering matrix Ŝ2. The voltages in terminals one and two are given as

V1 = n1V and V2 = n2V , respectively (top, n1 = 1,n2 = 3; bottom, n1 = 2,n2 = 3). The Dynes parameter is set to Ŵ = 0.0001�. Left: At

phase φ0 = 2.16 in the topological region. Right: At phase φ0 = 0 in the trivial region. We have used an average over N = 10 phase shifts φ.

The insets show a larger range of voltages.

FIG. 11. The conductances G12,G21,G11, and G22 between the voltage-biased leads one and two as a function of voltage in logarithmic

scale. The conductances are obtained from the currents shown in Fig. 10. Left: At phase φ0 = 2.16 in the topological region. Right: At phase

φ0 = 0 in the trivial region. The expected quantization of the transconductance is seen for voltages eV/� � 0.001.
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FIG. 12. Dissipation P/PN (dashed lines) and chirality C (solid lines) as a function of voltage in logarithmic scale. Green curves correspond

to V1 = 2V,V2 = 3V and red curves correspond to V1 = V,V2 = 3V . Left: At phase φ0 = 2.16 in the topological region. The chirality tends

to −1 as the dissipation tends to zero at low enough voltages. Right: At phase φ0 = 0 in the trivial region.

Due to the smaller gap, lower voltages have to be

used to observe the quantization of the transconductance,

making the calculations much more time consuming. The

current-voltage characteristics are shown in Fig. 10. The

conductances are shown in Fig. 11. As explained in the main

text, four different voltage regimes can be distinguished. At

high voltages, V ≫ �/e, one finds the normal-state conduc-

tances, GN
11 = −0.46 × (4e2/h), GN

22 = −0.49 × (4e2/h),

and GN
12 = GN

21 = 0.27 × (4e2/h). Lowering the voltage,

0.01�/e � V � 2�/e, multiple Andreev reflections lead to

resonance features. At even lower voltages, V � 0.01�/e,

the interplay between Landau-Zener transitions and inelas-

tic relaxation becomes important. Here we chose a Dynes

parameter Ŵ = 0.0001�. At φ0 = 2.16, it becomes compa-

rable to the Landau-Zener rate at voltage V ≈ 0.002�/e.

This is consistent with the observed quantization at V �
0.001�/e. The dissipation and the chirality are shown in

Fig. 12.
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Mélin, and H. Shtrikman, arXiv:1606.08436.

075417-10


