Christoph Niethammer - Michael M. Resch
Wolfgang E.Nagel - Holger Brunst
Hartmut Mix

Editors

High Performance
Computing

@ Springer

Tools for High Performance Computing 2017

Christoph Niethammer - Michael M. Resch -
Wolfgang E. Nagel - Holger Brunst -
Hartmut Mix

Editors

Tools for High Performance
Computing 2017

Proceedings of the 11th International
Workshop on Parallel Tools for High
Performance Computing, September 2017,
Dresden, Germany

@ Springer

Editors

Christoph Niethammer
Hochstleistungsrechenzentrum
Stuttgart (HLRS)

Universitét Stuttgart

Stuttgart, Germany

Wolfgang E. Nagel

Zentrum fiir Informationsdienste
und Hochleistungsrechnen (ZIH)
Technische Universitidt Dresden

Dresden, Germany

Michael M. Resch
Hochstleistungsrechenzentrum
Stuttgart (HLRS)

Universitét Stuttgart

Stuttgart, Germany

Holger Brunst

Zentrum fiir Informationsdienste
und Hochleistungsrechnen (ZIH)
Technische Universitidt Dresden

Dresden, Germany

Hartmut Mix

Zentrum fir Informationsdienste
und Hochleistungsrechnen (ZIH)
Technische Universitiat Dresden

Dresden, Germany

ISBN 978-3-030-11986-7 ISBN 978-3-030-11987-4 (eBook)
https://doi.org/10.1007/978-3-030-11987-4

Library of Congress Control Number: 2019930155
Mathematics Subject Classification (2010): 68M14, 68M20, 68Q85, 65Y05, 65Y20

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Cover illustration: Sky map of systematic errors in one component of the celestial position in the star
catalog of a simulated ESA Gaia mission if thermo-mechanic instabilities are not calibrated. The
calibration of the real Gaia data for such effects is using a significant amount of CPU time on the
HPC system of the Center for Information Services and High Performance Computing (ZIH). Data:
S. Klioner, Visualization: R. Geyer, Lohrmann-Observatorium—TU Dresden, Gaia DPAC.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-11987-4

Preface

The advances in High Performance Computing are today forced by an impressive
growth of the computer systems. This is connected with a drastic increasing number
of compute elements. At the same time, the systems also become more and more
complex, because of the combination of different special designed and optimized
processors or accelerators. These advances steadily allow to calculate more com-
plex or even new scientific or technical problems.

This progress is also connected with an even more increasing of the complexity
of the used software applications. This demands a challenging effort from the
software developers to utilize the entire potential of these hardware systems. Here,
powerful software analysis and optimization tools are required that support appli-
cation developers during the software design, implementation, and testing process.
As a result, many international research groups are specialized in the development
and improvement of such software tools. They all share the view that their tools
could deliver an important contribution to the progress in the computer usage.

The International Parallel Tools Workshop is a series of workshops that already
started in 2007 at the High Performance Computing Center Stuttgart (HLRS) and
currently takes place once a year. The goal of these workshops is to bring together
HPC tools developers and users from science and industry to learn about new
achievements and to discuss future development approaches. The scope includes
HPC-related tools for performance analysis, debugging, or system utilities as well
as presentations providing feedback and experiences from tool users.

The 11th International Parallel Tools Workshop' took place on September
11-12, 2017 in Dresden, Germany. In the presentations and discussions during this
workshop, both aspects of the tools advancement were addressed. New tools
developments have been described, and also examples for successful usage of them
to analyze and optimize HPC applications have been presented. Main research
topics shown at this workshop were structured performance analysis approaches,
unified and online instrumentation, profiling and optimization assistance, and the
investigation of the resource management. A presented counter inspection toolkit

"https://tools.zih.tu-dresden.de/2017/.

https://tools.zih.tu-dresden.de/2017/

vi Preface

could assist application developers in investigating and categorizing the increasing
number and complexity of hardware counters that are offered by the vendors of
modern hardware. The content of the presentations comprised a broad spectrum of
modern programming techniques. Task-based programming and OpenMP execu-
tion models were included as well as development assistance for accelerator-
supported applications.

The book contains the contributed papers to the presentations held on the
workshop in September 2017 in Dresden. As in the previous years, the workshop
was jointly organized by the Center of Information Services and High Performance
Computing (ZIH)* of the Technische Universitaet Dresden and the High
Performance Computing Center Stuttgart (HLRS).?

Dresden, Germany Hartmut Mix
Holger Brunst

Christoph Niethammer

Michael M. Resch

Wolfgang E. Nagel

Zhttps://tu-dresden.de/zih.
®https://www.hlrs.de.

https://tu-dresden.de/zih
https://www.hlrs.de

Contents

A Structured Approach to Performance Analysis
Michael Wagner, Stephan Mohr, Judit Giménez and Jesus Labarta

Counter Inspection Toolkit: Making Sense Out of Hardware
Performance Events
Anthony Danalis, Heike Jagode, Hanumantharayappa, Sangamesh Ragate
and Jack Dongarra

ASSIST: An FDO Source-to-Source Transformation Tool for HPC
Applications
Youenn Lebras, Andres S. Charif Rubial, Romain Dolbeau

and William Jalby

Unifying the Analysis of Performance Event Streams at the Consumer
Interface Level
Jean-Baptiste Besnard, Allen D. Malony, Sameer Shende, Marc Pérache,
Patrick Carribault and Julien Jaeger

OMPT-Multiplex: Nesting of OMPT Tools
Joachim Protze, Tim Cramer, Simon Convent and Matthias S. Miiller

SCIPHI Score-P and Cube Extensions for Intel Phi.
Marc Schliitter, Christian Feld, Pavel Saviankou, Michael Knobloch,
Marc-André Hermanns and Bernd Mohr

Towards Elastic Resource Management
Isaias A. Comprés Ureia and Michael Gerndt

Online Performance Analysis with the Vampir Tool Set
Matthias Weber, Johannes Ziegenbalg and Bert Wesarg

17

39

57

73

85

vii

A Structured Approach to Performance m
Analysis L

Michael Wagner, Stephan Mohr, Judit Giménez and Jesiis Labarta

Abstract Performance analysis tools are essential in the process of understanding
application behavior, identifying critical performance issues and adapting applica-
tions to new architectures and increasingly scaling HPC systems. State-of-the-art
tools provide extensive functionality and a plenitude of specialized analysis capabil-
ities. At the same time, the complexity of the potential performance issues and some-
times the tools themselves remains a challenging task, especially for non-experts.
In particular, identifying the main issues in the overwhelming amount of data and
tool opportunities as well as quantifying their impact and potential for improvement
can be tedious and time consuming. In this paper we present a structured approach
to performance analysis used within the EU Centre of Excellence for Performance
Optimization and Productivity (POP). The structured approach features a method to
get a general overview, determine the focus of the analysis, and identify the main
issues and areas for potential improvement with a statistical performance model that
leads to starting points for a subsequent in-depth analysis. All steps of the struc-
tured approach are accompanied with according tools from the BSC tool suite and
underlined with an exemplary performance analysis.

1 Introduction

Taking advantage of the full computational potential of contemporary high perfor-
mance computing (HPC) systems is a challenging and intricate task. It necessitates
not only considering parallel execution, network, system topology, and hardware
accelerators but also the proper usage of a variety of different parallel programming
models such as message passing, threading and tasking, one-sided communication,
or architecture specific models to include hardware accelerators.

M. Wagner () - S. Mohr - J. Giménez - J. Labarta
Barcelona Supercomputing Center (BSC), C/ Jordi Girona, 29, 08034 Barcelona, Spain
e-mail: michael.wagner@bsc.es

© Springer Nature Switzerland AG 2019 1
C. Niethammer et al. (eds.), Tools for High Performance Computing 2017,
https://doi.org/10.1007/978-3-030-11987-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11987-4_1&domain=pdf
mailto:michael.wagner@bsc.es
https://doi.org/10.1007/978-3-030-11987-4_1

2 M. Wagner et al.

To ease the complexity of the continuing optimization and adaption of software,
performance analysis tools support developers not only in identifying performance
issues within their applications but also in understanding how new architectures and
increasingly scaling HPC systems affect their parallel behavior. While performance
analysis tools are steadily improving their functionality and usability, the complexity
of the parallel behavior, convoluted and multifaceted causes of performance issues,
and sometimes the tools themselves pose a challenging and often overwhelming task,
especially, for non-experts.

In recent years it is generally recognized that this burden cannot and should not be
put on domain scientists but must be carried by experts from computer science. This is
reflected among others in the promotion of co-design efforts and lately in the creation
of the EU Centre of Excellence for Performance Optimization and Productivity (POP)
[1]. POP targets the frequent lack of quantified understanding of actual behavior
and missing knowledge of the most productive direction of code refactoring by
providing performance analysis as a service to code developers, software users, and
infrastructure operators.

But even for experts, identifying the main issues in the overwhelming amount
of data and tool opportunities as well as quantifying their impact and potential for
improvement can be tedious and time consuming at least. An unstructured approach
to performance may overlook certain behavioral aspects or performance issues. At
the end, the goal of performance analysis is not only to identify and solve some of
the performance issues but rather understanding the application behavior profoundly,
quantifying the achieved performance and improvement potential, and guiding to the
most productive development efforts. Furthermore, the performance analysis itself
should be carried out in the most productive way to avoid wasting time and resource.
This becomes particularly important when the performance analysis is executed as
a service, as in the EU Centre of Excellence for Performance Optimization and
Productivity.

In this paper, we propose a structured approach to performance analysis estab-
lished for many years at BSC as well as the EU Centre of Excellence for Performance
Optimization and Productivity. The structured approach incorporates five steps from
collecting a representative measurement set, to getting a general overview and defin-
ing the focus of analysis, identifying the main issues and areas for potential improve-
ment with a statistical performance model, an in-depth analysis guided by the per-
formance model, and, finally, a documenting and reporting the analyzed behavior,
performance issues and recommendations.

In the remainder of the paper, we discuss the necessary background to better
follow the argumentation in Sect. 2. After that, we present the structured approach to
performance analysis and discuss it along an exemplary performance analysis from
POP in Sect. 3. Finally, Sect. 4 summarizes the work and draws conclusions.

A Structured Approach to Performance Analysis 3

2 Background

This section introduces the EU Centre of Excellence for Performance Optimization
and Productivity (POP), the BSC tools, and the example code CheSS used for the
analysis in the following chapter.

2.1 The EU Centre of Excellence for Performance
Optimization and Productivity (POP)

The key motivation for the Centre of Excellence in Performance Optimization and
Productivity is advancing the productivity of EU research and industry by providing
free of charge services that help improving the performance of high performance
computing and parallel software.

POP consists of six European partners: Barcelona Supercomputer Center (BSC),
High Performance Computing Center Stuttgart (HLRS), Juelich Supercomputing
Centre (JSC), Numerical Algorithms Group (NAG), RWTH Aachen and TERATEC.
All partners are characterized by excellence in performance analysis and tuning, best
practices in programming models and parallel programming, a strong research and
development background, as well as a proven commitment in their application to
real academic and industrial use cases.

POP offers a portfolio of services designed to help users optimize parallel soft-
ware, identify and understand potential performance issues. While the primary cus-
tomers are code developers, the services are also suited for code users and infras-
tructure providers. The central services are: Performance Audits, Performance Plans,
Proof-of-Concept implementations, and Training.

Performance Audits provide an initial analysis and overview that measures arange
of performance metrics to assess quality of performance and identify the issues
affecting performance. Performance Plans undertake further performance evalua-
tions to qualify and quantify solutions and estimate potential improvements. Proof-
of-Concept implementations use extracted application kernels to demonstrate actual
benefits from tuning and optimization. Training offers events and materials covering
parallel profiling tools, programming models and parallelization approaches.

2.2 The BSC Tools

For our performance measurements we choose the open source BSC tools [2] includ-
ing the Extrae trace monitor [3] and the Paraver trace analyzer [4] for two main
reasons. First, Extrae combines the benefits of instrumentation and sampling by
intercepting the parallel runtime to provide the exact communication behavior but
uses sampling instead of function instrumentation to record the application behavior

4 M. Wagner et al.

in the compute phases. Second and for this case most important, Extrae and Paraver
support all steps with the according functionality.

The central analysis tool is Paraver, a trace-based performance analyzer featuring
great flexibility to explore and extract information. Paraver provides two main visu-
alizations: timelines, which graphically display the evolution of application behavior
over time, and tables (profiles and histograms), which deliver statistical information.
These two complementary views allow easy identification of computational ineffi-
ciencies, load balancing issues, serializations that affect the parallel scalability, cache
and memory impact on the performance, and regions with generally low performance.
In addition, Paraver contains multiple analytic modules that allow, for instance, the
automatic generation of key performance indicators and performance quantification
(basic analysis), the semi-automatic detection of application structure (clustering),
and the tracking of key performance characteristics over multiple measurements to
identify scalability limitation (tracking).

The Dimemas simulator allows a fast evaluation of what-if scenarios for MPI
applications, for example, to evaluate the benefits of moving to a machine with a
faster network, or potential improvements from better load balance.

The performance data collection is performed by the Extrae trace monitor. Extrae
intercepts the common parallel runtime environments (MPI, OpenMP, OmpSs,
Pthreads, CUDA, OpenCL, SHMEM) and supports all major programming lan-
guages (C, C++, Fortran, Python, JAVA). It has been successfully ported to a wide
range of platforms like Intel, Cray, BlueGene, Fujitsu Spark, MIC, and ARM. On
most platforms the preload mechanism allows avoiding specific compilations and
working with the unmodified production binary.

2.3 Example Code: CheSS

In order to simulate the properties of matter at a microscopic scale on has to explicitly
take into account the atomic structure of the system under investigation. Within
these so-called atomistic simulations there exist many different levels of description,
ranging from empirical approaches yielding a moderate precision to very accurate
ab-initio methods that are based on the fundamental laws of Quantum Mechanics.

During the past years, Density Functional Theory (DFT) has established itself
as the de facto standard for atomistic simulations on an ab-initio level thanks to its
good compromise between accuracy and speed. The main advantage of DFT is that
it only scales cubically with respect to the system size—this might sound bad, but
is actually much better than that of other ab-initio methods. Therefore, DFT allows
performing calculations up to a few hundred atoms while keeping an accurate ab-
initio description. Beyond these sizes the numerical cost becomes too high due to
the cubic scaling. However, there exist also linear scaling implementations of DFT
that allow accessing larger sizes, and indeed with such approaches calculations up
to thousands of atoms are possible.

A Structured Approach to Performance Analysis 5

Nowadays there exist many different implementations of DFT in numerous sci-
entific codes, which mainly differ in the basis set that they use. We focus in the
following on localized basis sets, which are a necessary requirement for large scale
DFT codes such as SIESTA, BigDFT, Quickstep, ONETEP, and Conquest. How-
ever, due to their localized character these various basis sets still have an important
point in common, namely that they lead to sparse matrices. Even more important,
the tasks to be performed with these sparse matrices are—once they are calculated—
basically identical for all codes. Moreover, in order to reach optimal performance, it
is important to exploit the sparsity of the matrices as much as possible.

These considerations have led to the creation of the CheSS library [5]. CheSS can
perform the required matrix operations that are necessary for a DFT code working
with set of localized basis, taking into account the sparsity of the matrices. The algo-
rithm of CheSS is based on an expansion in terms of Chebyshev polynomials. Apart
from their optimal interpolation properties, Chebyshev polynomials have the advan-
tage that they can be calculated with a simple recursion formula that allows a very
efficient parallelization. More precisely, the Chebyshev approach makes it possible
to calculate the individual columns of the final matrix basically independently from
each other. Only at the very end a global communication is necessary to gather the
individually calculated columns. In CheSS we exploit this feature by parallelizing
the calculation of the columns using distributed memory parallelization (MPI). On a
second level we add a shared memory parallelization (OpenMP) to further improve
the parallel scalability of the library.

The most intensive task of CheSS consists in repeated matrix vector operations to
build up the columns of the Chebyshev matrix polynomials. Unfortunately, this is an
operation with a rather bad ratio of computation to memory access, and obtaining a
parallelization of this part is therefore quite difficult. Nevertheless, much effort was
invested into an efficient parallelization to reach a good scalability of CheSS [5].

As a stand-alone library, CheSS intends to be as independent as possible of the
DFT code that interfaces it. The only input that it requires is the sparse matrices that
it shall process. At present CheSS has been coupled to the two DFT codes SIESTA
and BigDFT. Whereas BigDFT is a relatively young code, SIESTA is one of the most
popular DFT codes with a long history and a large user base. This importance is also
reflected by the fact that SIESTA is one of the flagship codes of the European Centre
of Excellence “Materials design at the Exascale” (MaX) [6].

For the analysis of CheSS within the POP project we used as example an FOE
calculation, as explained in detail in Ref. [5]. In a nutshell, FOE takes as input two
sparse matrices H and S and calculates the sparse matrix K using the aforemen-
tioned Chebyshev expansion. For the matrix-vector multiplications required for the
calculations of the Chebyshev polynomials it is furthermore necessary to introduce
an additional intermediate sparsity pattern, which we will denote by K. As specific
example we took a set of matrices stemming from a calculation with the code BigDFT,
namely an ensemble of stacked pentacene molecules. In total the system contained
6876 atoms and 19482 localized basis functions centered on the atoms. The resulting
matrices had a degree of sparsity of 98.96% for S, 97.11% for H, 94.30% for K and
90.85% for K.

6 M. Wagner et al.

3 Structured Performance Analysis

Analyzing the performance of an application poses a significant challenge—not
solely for non-experts—and more often than not, performance analysis deteriorates
to simply finding “something” that can be improved: some unbalanced parallel behav-
ior, too much time in communication, low compute performance or a function that
consumes more time than expected.In recent years it is generally recognized that this
burden cannot and should not be put on domain scientists but must be carried by
experts from computer science. This is reflected among others in the promotion of
co-design efforts and lately in the creation of the EU Centre of Excellence for Per-
formance Optimization and Productivity (POP) [1]. POP targets the frequent lack of
quantified understanding of actual behavior and missing knowledge of the most pro-
ductive direction of code refactoring by providing performance analysis as a service
to code developers, software users, and infrastructure operators.

But even for experts, identifying the main issues in the overwhelming amount
of data and tool opportunities as well as quantifying their impact and potential for
improvement can be tedious and time consuming at least. An unstructured approach
to performance may overlook certain behavioral aspects or performance issues. At
the end, the goal of performance analysis is not only to identify and solve some of
the performance issues but rather understanding the application behavior profoundly,
quantifying the achieved performance and improvement potential, and guiding to the
most productive development efforts. Furthermore, the performance analysis itself
should be carried out in the most productive way to avoid wasting time and resource.
This becomes particularly important when the performance analysis is executed as
a service, as in the EU Centre of Excellence for Performance Optimization and
Productivity.

In this paper, we propose a structured approach to performance analysis estab-
lished for many years at BSC as well as the EU Centre of Excellence for Perfor-
mance Optimization and Productivity. The structured approach establishes five steps
from collecting a representative measurement set, to getting a general overview and
defining the focus of analysis, identifying the main issues and areas for potential
improvement with a statistical performance model, an in-depth analysis guided by
the performance model, and, finally, adocumenting and reporting the analyzed behav-
ior, performance issues and recommendations. While finding things to improve is
certainly an appropriate goal, performance analysis, can and should be more than
that. First and foremost, performance analysis must provide better understanding of
the behavior of an application because lacking quantified and profound understand-
ing of the actual behavior will complicate or even inhibit any optimization attempts.
Second, performance analysis is not about finding just “some performance issue” but
rather identifying all of the most severe issues. Essential for that is to quantify perfor-
mance to allow to rank performance issue one their impact as well as giving estimates
on potential performance gains. Finally, performance analysis must combine both,
the quantification of performance and the understanding of application behavior, to
provide guidance for optimization and refactoring of the application. Incidentally,

A Structured Approach to Performance Analysis 7

the performance analysis itself should be executed in the most productive way to
avoid wasting time and resource.

To achieve this, we propose a structured approach to performance analysis estab-
lished for many years at teh Barcelona Supercomputing Center as well as the EU
Centre of Excellence for Performance Optimization and Productivity. We propose
an approach that follows five main steps:

Measurement Collecting a representative set of three to five measurements, e.g.,
with increasing core counts for a scalability-focused analysis. A set of measure-
ments allows to better understand the evolution of key performance metrics and
distinguish between general behavior and behavior specif for a certain number of
cores or a certain input.

Overview and focus of analysis Getting an initial overview of the application
behavior, detecting the overall structure (e.g. how many repeating phases, iter-
ations etc.). Based on this, selecting the focus of analysis (FOA), which contains
a application phase with representing behavior, e.g., one or a few iterations. The
focus of analysis allows to narrow down the further analysis, make it more com-
parable between the different measurements of the set by removing, e.g., constant
initialization time, and reducing the overall analysis effort.

Performance modeling Using a performance model to determine the perfor-
mance, efficiency, and evolution of key performance indicators. Our proposed
performance model considers among others the parallel efficiency, load balance,
communication efficiency, and computation scalability (see Sect. 3.3). Its main
target is to quantify performance, identify performance issues, rate their impact,
and estimate optimization potential.

Detailed analysis Focusing and prioritizing the detailed analysis based on the
outcome of the performance model. Gradually applying more advanced (and more
costly) analysis techniques to understand the root causes of performance issues.

Reporting Recording the performance overview, analysis results and recommen-
dations and reporting them. This allows for the key elements of the performance
analysis to be accessed by other users or analysts, to be utilized for future analyses,
and to prevent the loss of information.

In the following, we discuss the five steps in detail on the exemplary performance
analysis of the CheSS library.

3.1 Measurement

Before the actual measurements we discussed the upcoming study with the customer
to understand as good as possible his expectations and topics for the analysis. The
main request for the analysis was to better understand the scalability of the application
and to identify potential scalability limits. To this end, we agreed on two measurement
sets recorded at MareNostrum 3, an Intel Sandy Bridge based system at BSC: The
first set increases the number of MPI processes from 120, 240, 480 to 960. Thereby,

8 M. Wagner et al.

each node runs four MPI processes due to memory limitations. This measurement
is used to study the scalability of the MPI communication and inter-node behavior.
The second set studies the behavior depending on the ratio of MPI ranks to OpenMP
threads. Each measurement uses 120 nodes with a ratio of MPI processes to threads
of 960:1, 480:2, 240:4, and 120:8. Each node runs a total of eight processes/threads
out of 16, again due to memory limitations. The measurements were performed by
the user with the analyst’s assistance using the above described configuration.

3.2 Overview and Focus of Analysis

Figure 1 shows timelines from the performance analyzer Paraver [4] of the execution
using 120 MPI processes with one thread each. The timeline displays represent the
behavior of an application along time and processes/threads and provide a general
understanding of the application behavior and simple identification of phases and
patterns. The timelines in Fig. 1 highlight different behavioral aspects evolving over
time in a two-dimensional chart. The vertical axis includes the executing processes
or threads; the horizontal axis represents the runtime behavior of the recorded appli-
cation. The upper three screenshots depict the metric Useful Duration, i.e., time
spent for computation outside of the parallel runtime (MPI or OpenMP); whereas
the color gradient from green to blue represents the length of each compute phase
from short to long, respectively; black marks time outside of useful computation,
i.e., time in the parallel runtime. The bottom screenshots depicts the time spent in
MPI communication.

The code executes three main phases Init, Calc, and Last. In the measured stan-
dalone version, Init makes up for about 80% of the runtime. However, this time is
overrepresented in the standalone version; within a normal usage scenario, the Calc
phase is dominating and, thus, the target of the analysis. The Last phase uses less
than 0.1% of the time and can be neglected.

The Calc phase includes ten main phases of varying length. Thereby, the rela-
tive timing is identical for each phase, i.e. all phases are virtually the same but are
differently stretched along time. We selected the fourth of these phases as focus of
analysis (FOA).

The focus of analysis (bottom two screenshots in Fig. 1) itself consists of three
compute phases: A first phase followed by calls to MPI_Win_create, MPI_Get,
MPI_Win_fence, and MPI_Win_free. Second, the central compute phase followed
by a large MPI_Allreduce, which is a global synchronization and collects the load
imbalance of the previous phase. At the end, a short compute phase followed by
another MPI Allreduce.

A Structured Approach to Performance Analysis 9

Useful Duration @ traces_120-1.filter_rs.prv

traces_120-1.filter_rs.prv #1

ul Duration § traces_120-1.chop_FOA.prv

mpi_120-1.chop_FOA.prv

Fig.1 Overview of the compute phases of the entire application (top), a zoom into the calc phase
(second), a zoom into the fourth phase, which is the selected FOA (third), and the MPI communi-
cation for the FOA (bottom)

10 M. Wagner et al.

3.3 Performance Modeling

After determining the focus of analysis, we apply a performance model to the appli-
cation phase selected as focus of analysis. The performance model combines fun-
damental performance factors that can be seen in Fig. 2. The performance model
allows quantifying parallel efficiency and scalability with a single percentage value
as well as providing an easy, high-level comparison of different executions.

The performance model computes the global efficiency, i.e. the overall perfor-
mance rating, based on the two main components: parallel efficiency and computa-
tion scalability. The parallel efficiency provides an overall assessment of the parallel
behavior of the application and is expressed as the product of load balance and
communication efficiency [7]. Load balance reflects the efficiency loss due to imbal-
ance in the total time spent in computation by each process. It is computed as the
ratio between the average computing time and the maximum computation time of all
processes. Communication efficiency describes the efficiency loss caused by com-
munication between the processes and is computed as the ratio of the maximum time
over all processes spent in computation and the complete runtime (computation time
and communication time). It is also the product of serialization efficiency and trans-
fer efficiency. Serialization efficiency measures the inefficiency due to dependencies
in the execution leading to a serialization of the parallel computation. It is com-
puted by simulating the execution with instantaneous (ideal) communication using
Dimemas [8] and collecting the the maximum communication efficiency achieved
by a single process. Transfer efficiency quantifies the performance loss caused by
actual data transfers. It can be computed as the ratio between the communication
efficiency of the real execution and the communication efficiency of an ideal exe-
cution (serialization efficiency). The parallel efficiency model is described in more
detail in [7].

The computation scalability describes the evolution of the total time spent in
computation of multiple executions and, therefore, is only meaningful for comparing
multiple executions, e.g. with increasing core counts. The computation scalability of
a given Recording the performance overview, analysis results and recommendations
and reporting them. This allows for the key elements of the performance analysis

Global Efficiency
Parallel Efficiency

Computation Scalability
Load
Balance
Transfer | Serialization I Frequency

Fig. 2 Performance model: fundamental performance factors and efficiencies

A Structured Approach to Performance Analysis 11

to be accessed by other users or analysts, to be utilized for future analyses, and
to prevent the loss of information.execution is computed as the ratio of the total
computing time of a reference execution and the total computing time of the given
execution. For instance, in measurement set with increasing core counts, the factor
compares the total compute time of all executions to the smallest execution, which
could be a serial or single-node execution. It can be further detailed in the scalability
of the IPC (instructions per cycle), the instructions, and the frequency. IPC scalability
reflects the evolution of the compute intensity over multiple measurements and is
measured as the ratio of the total number of instruction and the total number of
cycles spent in computation in comparison to the reference execution. Instructions
scalability describes the evolution of the computational workload and is measured
by the total number of instructions in computation over all processes in comparison
to the reference execution. Frequency scalability measures the evolution of the clock
frequency in the compute phases and is computed as the ratio between the total
number of cycles and the total number of time spent in compute phases in comparison
to the reference execution.

Table 1 shows the overview of the fundamental performance factors for the mpi-
only measurements with 120, 240, 480, and 960 processes. While the performance
model can be computed manually, Paraver’s basic analysis package [2] computes all
the performance factors automatically, which frees the user from manually collecting
the data for the performance model and avoids potential errors in the process.

The observed global efficiency of the application decreases drastically from 90%
with 120 processes to 52% with 960 processes. Table 1 reveals an efficiency loss
in three main areas. First, the most severe issue is the decrease in computation
scalability, which means the total amount of time spent in the computation phases
is increasing. This is mainly due to the decreasing instructions scalability, i.e. with
more processes the total amount instructions to solve the same problem is increased,
which signals that a part of the total workload is replicated and, therefore, is not
scalable. Second, an almost equally important issue is the decreasing communication

Table 1 Efficiency and scalability factors for the mpi-only executions with 120 to 960 processes

120 (%) 240 (%) 480 (%) 960 (%)
Global efficiency 90.2 82.7 70.8 52.5
Parallel efficiency 90.2 85.9 78.9 68.5
— Load balance 93.3 92.0 90.9 85.8
— Comm efficiency 96.7 934 86.7 79.8
— Serialization efficiency 99.8 99.8 99.8 99.8
— Transfer efficiency 96.9 93.5 86.9 79.9
Computation scalability 100.0 96.3 89.7 79.0
— IPC scalability 100.0 98.7 96.3 91.8
— Instructions scalability 100.0 97.6 93.3 85.6

— Frequency scalability 100.0 99.7 99.6 99.7

12 M. Wagner et al.

efficiency, which is almost entirely caused by a decreasing transfer efficiency. This
indicates that relatively more time is spent in the actual data transfers for increasing
core counts. The third issue is the decreasing load balance.

Breaking down the overall performance into distinct performance factors allows
identifying the most important performance issues, quantifying their impact, and
quantifying potential performance gains and can thus be used to guide the further,
detailed analysis.

3.4 Detailed Analysis

The further analysis is focused and prioritized based on the outcome of the perfor-
mance model. The detailed analysis investigates the revealed performance issues by
gradually applying more advanced (and more costly) analysis techniques to under-
stand the root causes of performance issues. In the following, we briefly discuss the
detailed analysis, while an extended version can be found in the according analysis
reports [9, 10]. For the analysis of the load balance and communication efficiency
we use the mpi-only measurements, which allows to analysis parallel behavior at
smaller scales than the hybrid MPI+ OpenMP version (default).

Load Balance

Figure 3 depicts the effects of the load imbalance within the focus of analysis. While
the left side gives an overview of the different duration of the compute phases, the
right side shows a histogram with the distribution of compute phases based on their
number of instructions. In the histogram each point represents a compute phase,
whereas the vertical axis represents the processes and the horizontal axis the number
of instructions performed in the given compute phase. The color gradient represents
the duration of the compute phase and, thus, is identical with the timeline on the
left. The further analysis reveals that, first, the load balance is directly related to the
balance in instructions, i.e. the imbalance is defined by the workload distribution
in the source code. Second, the nested d-shape of the load distribution hints to a
decomposition where the most load is in the center of the domain and the center
of each partition. In addition, the histogram allows to exactly pin-point the regions
containing the load imbalance and link them to the according source code regions.

Communication Efficiency

Figure 4 compares the MPI communication with 120 (left) and 960 processes (right),
whereas the time is scaled to show the entire focus of analysis in both cases.

The main contributor to the increasing communication time is the time spent
in MPI_Win_fence (red), which increases from 26 ms with 120 processes to over
700 ms with 960 processes, This operation ensures that all previously initiated calls
to MPI_Get are finished. Since the calls to MPI_Get are executed asynchronously,

A Structured Approach to Performance Analysis 13

Fig. 3 Load balance: timeline with the compute phases (left) and a histogram showing the distri-
bution of compute phases based on their number of instructions (right)

their time only shows the time needed to issue the operations. The actual execu-
tion of the transfer is represented in the time of MPI_Win_fence, i.e. the combined
time is the real execution time of the MPI_Get operations. For each measurement,
the number of MPI_Get operations per process is equal to the number of total MPI
processes, e.g. 120, 240, 480, 960. Thus, the total number of MPI_Get operations
increases quadratically with the number of processes. These MPI_Get operations
are used to gather a distributed matrix, i.e. combined they mimic an MPI_Allgatherv
with one-sided communication routines.

Computation Scalability
For the analysis of the computation scalability we use the second measurement set

that contains the hybrid MPI + OpenMP measurements that keep the total amount of
cores constant but vary the ratio of MPI processes to OpenMP threads (Fig. 5).

Fig. 4 Communication: comparing the communication with 120 (left) and 960 processes (right)

Fig. 5 OpenMP parallel regions with a 240:4 (left) and 120:8 (right) process:thread ratio

14 M. Wagner et al.

The hybrid version improves the parallel behavior drastically by increasing the
load balance to 94.2% and the communication efficiency to 89.5%. In fact, the version
with the most threads outperforms the other versions in almost every aspect leading to
aspeed up 2.0 over the mpi-only version. However, the computation scalability drops
by over 5% from the 240:4 to the 120:8 measurements. The detailed analysis reveals
two parallel loops (cyan, dark blue), where the compute efficiency (IPC) drops in the
120:8 version, while the workload (instructions) is identical. Using the clustering and
tracking tools from the BSC tool suite [2] a variety of PAPI performance counters was
compared between the two measurements, which identified stalls in the reservation
station and reorder buffer as the main sources. Both effects are discussed in detail in
the according performance report [10].

3.5 Reporting

The final step is documenting and reporting the analysis including the performance
overview, analysis results and recommendations. While this step might seem dull and
insignificant, it is essential to convey the results and recommendations to the user
asking for the performance analysis. In addition, documenting the analysis allows
for the key elements of the performance analysis to be accessed by other users or
analysts, to be utilized for future analyses, and to prevent the loss of information.

4 Conclusions

In this paper we argue for a structured approach to performance analysis. The struc-
tured approach is motivated by the complexity of application behavior, the complexity
of the performance issues and their sources and the resulting complexity of the per-
formance analysis process itself. Identifying the main issues in the overwhelming
amount of data and tool opportunities as well as quantifying their impact and poten-
tial for improvement can be tedious and time consuming at least, which leads to a
frequent lack of quantified understanding of actual behavior and missing knowledge
of the most productive direction of code refactoring.

We propose a structured approach to performance analysis cultivated and estab-
lished for many years at BSC as well as the EU Centre of Excellence for Perfor-
mance Optimization and Productivity. The structured approach consists of five steps
from collecting a representative measurement set, to getting a general overview
and defining the focus of analysis, identifying the main issues and areas for poten-
tial improvement with a statistical performance model, an in-depth analysis guided
by the performance model, and, finally, a documenting and reporting the analyzed
behavior, performance issues and recommendations. We discuss all steps along an
exemplary performance analysis from the EU Centre of Excellence for Performance
Optimization and Productivity and demonstrate their realization with the BSC tools.

A Structured Approach to Performance Analysis 15

Acknowledgements We gratefully acknowledge the support of the POP and MaX projects, which
have received funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No. 676553 and 676598, respectively.

References

Al

EU Centre of Excellence for Performance Optimization and Productivity (POP). http://pop-
coe.eu/

BSC Tools. http://tools.bsc.es

Extrae instrumentation package. http://tools.bsc.es/extrae

Paraver: a flexible performance analysis tool. http://tools.bsc.es/paraver

Mohr, S., Dawson, W., Wagner, M., Caliste, D., Nakajima, T., Genovese, L.: Efficient compu-
tation of sparse matrix functions for large-scale electronic structure calculations: The cheSS
library. J. Chem. Theory Comput. 13(10), 4684—4698 (2017)

European Centre of Excellence Materials Design at the Exascale (MaX). http://www.max-
centre.eu/

Rosas, C., Giménez, J., Labarta, J.: Scalability prediction for fundamental performance factors.
Supercomput. Front. Innov. 1(2), (2014)

Dimemas simulator. http://tools.bsc.es/dimemas

Wagner, M., Rosas, C., Giménez, J., Labarta, J.: CheSS/SIESTA Performance Assessment
Report (POP_AR_32) (2016)

Wagner, M., Giménez, J., Labarta, J.: CheSS/SIESTA Performance Plan Report (POP_PP_11)
(2017)

http://pop-coe.eu/
http://pop-coe.eu/
http://tools.bsc.es
http://tools.bsc.es/extrae
http://tools.bsc.es/paraver
http://www.max-centre.eu/
http://www.max-centre.eu/
http://tools.bsc.es/dimemas

Counter Inspection Toolkit: Making)
Sense Out of Hardware Performance e
Events

Anthony Danalis, Heike Jagode, Hanumantharayappa,
Sangamesh Ragate and Jack Dongarra

Abstract Hardware counters play an essential role in understanding the behavior of
performance-critical applications, and inform any effort to identify opportunities for
performance optimization. However, because modern hardware is becoming increas-
ingly complex, the number of counters that are offered by the vendors increases and,
in some cases, so does their complexity. In this paper we present a toolkit that aims
to assist application developers invested in performance analysis by automatically
categorizing and disambiguating performance counters. We present and discuss the
set of microbenchmarks and analyses that we developed as part of our toolkit. We
explain why they work and discuss the non-obvious reasons why some of our early
benchmarks and analyses did not work in an effort to share with the rest of the
community the wisdom we acquired from negative results.

1 Introduction

Improving application performance requires that the people undertaking the effort
understand what the performance bottlenecks are. A key step in the process of under-
standing the factors that limit an application’s performance is the examination of

A. Danalis (B<) - H. Jagode - J. Dongarra

Innovative Computing Laboratory, University of Tennessee, 1122 Volunteer Blvd, Knoxville, TN
37996, USA

e-mail: adanalis @icl.utk.edu

H. Jagode
e-mail: jagode @icl.utk.edu

J. Dongarra

e-mail: dongarra@icl.utk.edu

Hanumantharayappa

Mathworks, 7700 Gleason drive, Apt 23D, Knoxville, TN 37919, USA
e-mail: Hanumanth.rpa@ gmail.com

S. Ragate
Cerebras Systems, 428 Madera Ave, apt 5, Sunnyvale, CA 94086, USA
e-mail: sangamesh@cerebras.net

© Springer Nature Switzerland AG 2019 17
C. Niethammer et al. (eds.), Tools for High Performance Computing 2017,
https://doi.org/10.1007/978-3-030-11987-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11987-4_2&domain=pdf
mailto:adanalis@icl.utk.edu
mailto:jagode@icl.utk.edu
mailto:dongarra@icl.utk.edu
mailto:Hanumanth.rpa@gmail.com
mailto:sangamesh@cerebras.net
https://doi.org/10.1007/978-3-030-11987-4_2

18 A. Danalis et al.

event counters that are recorded by the hardware during execution. Such counters
can reveal the behavior of code segments with respect to the hardware. In particular,
modern hardware contains performance monitoring units (PMUs), which count the
events that take place:

e inside CPU cores, e.g., cache misses and branch related events,
e off-core, e.g., power consumption, and bytes read from memory controller,
e on completely separate hardware, such as network cards.

Many of these events have a rather straightforward meaning and can be mapped
directly to the behavior of an application. However, when developers are interested
in understanding the behavior of their code in great detail, the events that are counted
inside CPU cores can prove to be quite challenging for two distinct reasons. First,
the number of counters has been increasing over the years. Developers interested in
how branches inside their code affect performance, or how good the cache locality
of their memory access patterns is, would find themselves confronted with multiple
events that relate to these concepts. Second, due to the increasing complexity of
modern CPUs, many of the events that provide detailed information have complex
descriptions and contain multiple flags that modify what exactly is being monitored.
For example, when measuring requests that missed the Level 2 (L2) cache, on an
Intel Haswell-EP CPU a developer can choose to count:

Demand Data Read requests that miss the L2 cache.

All demand requests that miss the L2 cache.

Requests from the L2 hardware prefetchers that miss the L2 cache.

Requests from the L1/L.2/L.3 hardware prefetchers or load software prefetches that
miss the L2 cache.

e All requests that miss the L2 cache.

Clearly, relying on such short descriptions to choose the exact set of events and
qulifiers needed to understand the performance bottlenecks of an application running
on such complex hardware is not ideal.

Abstraction layers, such as the Performance Application Programming Interface
(PAPI) [1], offer derived events that readily map to performance abstractions by
offering combinations of actual native hardware events. However, such derived events
hide details that could provide useful insights to the performance analyst.

In this paper, we present the Counter Inspection Toolkit (CIT), a collection of
microbenchmarks and analyses aimed to automatically group hardware counters
into logical groups based on what they are counting, and help performance-conscious
application developers understand how counters relate to the behavior of code seg-
ments. We articulate the need for such a toolkit further by discussing how seemingly
simple code segments can lead to non-obvious counter behavior, and discuss all the
lessons learned, as well as our observations on details that can affect counter values
and application performance.

In summary, this paper presents a body of work that aims to help developers who
care about performance, but are not hardware wizards with a perfect understanding
of chip design and counter semantics.

Counter Inspection Toolkit: Making Sense Out of Hardware Performance Events 19

Fig.1 Simple code segment temp = 0;

do{
temp++;
if ((temp % 2) == 0){
global_var += 2;
}

} 'while (temp < size);

Fig. 2 Code segment with

temp = 0;
RNG St
temp++;
random_number (result);
if ((result % 2) == 0){

global_var += 2;
}

} 'while (temp < size);

2 Non-obvious Code Behavior

Let us consider the code shown in Fig.1 and try to speculate on the number of
conditional branches that will execute as a function of the parameter size.

We should first note that this code segment is oversimplified for demonstrative
purposes, so we will assume that it has not been compiled with an aggressive opti-
mization level, which would replace the whole loop with a simple expression due
to the simplicity of the operations performed by the code. By examining the code,
it is natural to infer that every iteration executes one conditional branch for the 1 £
statement and another for the termination condition of the while statement.

Examining the assembler code, shown in Fig. 3, annotated with the C code by gdb,
helps enforce the assessment since the two condition branches (“jne” and “j1”)
can be seen in the code and no other branch instruction is present. The expectation
can be verified experimentally by instrumenting the code with PAPI to count the
number of conditional branch instructions that are executed by the loop, and, indeed,
our experiments were in agreement with the theory.

Now, let us modify the previous program to include code that computes a random
number. For simplicity, the random number generator (RNG) code is abstracted away
in a macro that stores the random number in the variable result without making
any calls to functions that would add branches to the execution. This variable is then
used in the condition of the 1 f statement as shown in Fig. 2.

Examining this new C code segment, one could infer that the number of conditional
branches that will execute must remain the same, since the control flow of the code
has not been affected by the modification. Furthermore, this assessment seems to be
enforced by the corresponding assembler code, shown in Fig. 4, since the types and

20 A. Danalis et al.

Fig. 3 Disassembled simple

code 52 do {

53 temp+t++;
<310>: mov eax, DWORD PTR [...]
<316>: add eax, Ox1

<319>: mov DWORD PTR [...],eax
54 if((temp % 2) == 0){
<325>: mov eax, DWORD PTR [...]
<331>: and eax, 0x1
<334>: test eax,eax
<336>:[jne 0x400e77 <353>
55 global_var += 2;

<338>: mov eax, DWORD PTR [...]
<344>: add eax, 0x2

<347>: mov DWORD PTR [...],eax

56 }

57 } while(temp < size);
<353>: mov eax, DWORD PTR [...]
<359>: cmp eax, DWORD PTR [...]
<362>:FgL 0x400ed4c <310>

relative positions of the conditional branch instructions in the new code segment are
the same as before.

However, when we performed the same experiment as before we found the count
of executed conditional branches to be equal to 2.5 x size, which at first glance
was surprising. Modifying the program further (by adding seemingly irrelevant work)
offered an additional clue as to what is happening, although it initially seemed further
perplexing.

In Fig.5, we show an example where we modified the code shown in Fig.2 by
adding another call to the RNG after the branch (shown highlighted in red). Changing
the code in this way makes the number of executed conditional branches go back to
two per iteration.

Further clues can be found by counting the number of mispredicted branches,
which turned out to be equal to 0.5 x size in the examples shown in Figs.2 and
5, which use the random number in the condition of the if statement, and zero! for
the example shown in Fig. 1, which uses an easy to predict variable in the condition.

The final clue that helps explain the unintuitive discrepancy between these codes
is the difference between the number of retired conditional branches and the number

IThe actual count is not zero, but rather a small number due to noise caused by code not shown in the
figures, such as the calls to PAPI_start () and PAPI_stop (). However, in our experiments
this number did not grow when varying the variable size, so for large iteration counts the fraction
of mispredicted branches approaches zero.

Counter Inspection Toolkit: Making Sense Out of Hardware Performance Events 21

Fig. 4 Disassembled code
with RNG

Fig. 5 Code segment with
RNG and redundant work

52 do{
53 temp++;
<310>: mov eax, DWORD PTR [...]
<316>: add eax, 0x1
<319>: mov DWORD PTR [...],eax
54 pseudo_random_generator () ;
<325>: mov eax, DWORD PTR [...]
<585>: mov DWORD PTR [...],eax
55 if ((result % 2) == 0){
<591>: mov eax, DWORD PTR [...]
<597>: and eax, Ox1
<600>: test eax,eax

<602>:F jne

(€]
(&)

global_var += 2;

0x400£81 <619>

<604>: mov eax, DWORD PTR [...]
<610>: add eax, 0x2
<613>: mov DWORD PTR [...],eax
57 }
58 } while(temp < size);
<619>: mov eax, DWORD PTR [...]
<625>: cmp eax, DWORD PTR [...]
<628>:F gL 0x400edc <310>
temp = 0;
do{
temp++;
random_number (result);
if ((result % 2) == 0){
global_var += 2;
}
random_number (result);
} while(temp < size);

of executed conditional branches. Indeed, the number of retired conditional branches
is always two per iteration in all three examples. Consulting the documentation of
the hardware vendor [2], one can see that branch prediction leads to the instructions
following the i f branch to execute speculatively. In the cases where the speculation
made a wrong prediction, the count of instructions that executed will include instruc-
tions that were canceled due to the misprediction. On the other hand, at-retirement
counting only counts events that were committed to architectural state and ignores
work that was performed speculatively and later discarded. In other words, as shown

22 A. Danalis et al.

in Figs. 3 and 4, since the branch due to the termination condition of the loop, “j 1”7,
is only a few instructions after the conditional branch of the i f statement, which is
predicted, the “j 1” instruction will execute speculatively. In the code shown in Fig. 1,
the speculation has no effect because the condition of the i f statement is very regular
and thus it is always predicted correctly. However, in the code shown in Fig. 2, the
random variable will cause the condition to be mispredicted 50% of the time. Thus,
in 50% of the iterations, the instructions that will execute speculatively (and among
them the conditional branch “j 1) will later have to be canceled—but they will be
counted as executed nevertheless. This accounts for the extra 0.5 x size factor in the
count of the executed branches for this code (in comparison to the count of retired
branches and in comparison to the executed branches for the code of Fig. 1.) To put
it another way, the “jne” branch (of the i f statement) is the one mispredicted, but
the “j1” branch is the one with the 50% additional executions.

This explanation also covers the behavior of the code shown in Fig.5. In this
case the jne (if) branch is also mispredicted 50% of the time. However, the addi-
tional instructions between the i £ statement and the “j 1” instruction push the latter
instruction too far down the execution path and prevent the speculative execution
from reaching it. I.e., the actual condition of the mispredicted branch, jne, is eval-
uated before the speculation can reach that far, and that whole path is discarded.

The set of microbenchmarks and analyses we are assembling together into the
Counter Inspection Toolkit—which is the focus of this paper—aim to highlight
such details in hardware counters and program execution, and identify connections
between them.

3 Branch-Related Events

One of the principal goals of this work is to automatically categorize native events
based on the higher-level concept they count. In other words, if two events have
different counts for codes that stress different aspects of the architecture, then they
belong in different groups; otherwise, they are grouped together. This endeavor is
important because many native events that are exposed by hardware vendors support
qualifiers that modify the actual hardware behavior that is being measured by the
event. Furthermore, in some cases multiple qualifiers can be combined leading to
a combinatorial explosion of possibilities. Therefore, we believe that application
developers can benefit from a list which contains a short list of concepts that relate to
branches, and the set of events and corresponding qualifiers that count each of these
concepts.

For simplicity, in the rest of this paper, when we use the term “native event”
we will refer to an event with qualifiers specified, not just the base event without
qualifiers. In this section we will discuss the effort to categorize events that count
branch-related execution.

Counter Inspection Toolkit: Making Sense Out of Hardware Performance Events 23

Fig. 6 Code with direct

do {
branch

temp++;
random_number (result);
if((result % 2) 0){
global_var + L
lelse ({
global_var + 28
}

} while(temp < size);

3.1 Design Choices

One of our design choices is to keep our microbenchmarks in C, instead of assem-
bler. The reasoning is two-fold. Firstly, we want the benchmarks to be portable
across architectures with incompatible instruction sets. Secondly, and perhaps more
important, we want our benchmarks to be easy to read and comprehend by appli-
cation developers even if they are not comfortable with assembler code. Meeting
this design choice, however, can create challenges, since the compiler might try to
rearrange code blocks to optimize execution, especially when optimization flags are
used. As an example consider the code shown in Fig. 6.

Since the control flow of the 1f-then-else statement demands that the two
blocks be mutually exclusive, one would expect that this code would be translated to
assembler with one conditional branch and one direct branch (to choose one block
and skip the other). This expectation turns out to be correct when no optimizations
are performed during compilation. In Fig. 7, we show the assembler code which was
generated when the “-00” flag was passed to the compiler, and one can clearly
identify the highlighted conditional and unconditional jumps (jne and jmp) used
to implement the mutual exclusion of the two blocks (as well as the additional
conditional jump, j1, for the loop termination condition).

However, if aggressive optimization flags are passed to the compiler, then the
resulting assembler code does not contain a direct branch, as can be seen in Fig. 8.
These kinds of discrepancies between what a developer assumes that the compiler
will do and what the compiler actually does have made it challenging to uphold our
design decision to write our microbenchmarks in C; but so far we have not found any
insurmountable barrier. To address the specific problem discussed above, we wrote
a microbenchmark (shown in Fig. 11f) that contains a goto statement and has a
control flow graph that cannot be simplified by the compiler.

3.2 Controlling Branch Misprediction

The codes we showed in Figs. 2, 5, and 6 all contain if statements with conditions
that compare the last bit of a random variable against zero. When a program does that,
the expected rate of branch misprediction is 50%. Because of this, as we discussed

24 A. Danalis et al.

Fig.7 Assembler with -00
53
flag 53 do{

56 if((result % 2) == 0){
<588>: mov 0x200ab5a (%rip), $eax
<594>: and $0x1, $Seax
<597>: test %eax,%eax
<599>:[jne 0x400e2e <618>

57 global_var += 1;
<601> mov 0x200a2l (%rip), $eax
<607> add $0x1, $Seax
<610>: mov %eax, 0x200al8 (%rip)
<616> Jjmp 0x400e3d <633>

58 lelse {

59 global_var += 2;
<618>: mov 0x200al0 (%rip), Seax
<624>: add $0x2, $eax
<627>: mov %eax, 0x200a07 (%rip)

60 }

61 } while(temp < size);
<633>: mov 0x200a31 (%rip), $eax
<639>: cmp -0x14 (%rbp), Seax
<642> gL 0x400cf7 <307>

in Sect. 2, the count of executed conditional branches for the code in Fig. 2 was equal
to 2 x 0.5+ 3 x 0.5 = 2.5 per iteration. Going a step further, we can control the
rate of branch misprediction by changing the condition to the one shown in Fig.9.
This allows us to control the rate of misprediction by assigning different values to
the variable K.

Increasing the value of K leads to more branches evaluating to false than true
(assuming a reasonable random number generator and an iteration count that is not
trivially small). Therefore, we can expect the branch prediction unit to tend to predict
false more often than true. A naive approximation would be to assume that as
soon as K > 2 the branch prediction unit will always predict false. If that were the
case then the count of executed conditional branches for the code in Fig. 9 would be
equalto 2.0 x K’Tl'o +3.0 x % per iteration, since only one out of K iterations would
be mispredicted (and thus only one out of K iterations would speculatively execute
an additional conditional jump). In Fig. 10 we plot this curve and the experimentally-
measured count of executed conditional branches for this code.

As can be seen in the graph, when K = 2, the code degenerates to the original
microbenchmark where the misprediction rate was 50% and thus the conditional
branches that execute are 2.5. Also, as the value of K grows (and thus the condition

Counter Inspection Toolkit: Making Sense Out of Hardware Performance Events 25
Fig. 8 Assembler with -03 53 d
flag of

56 if((result % 2) == 0){
<424>: mov 0x200a82 (%$rip), $eax
<430>: test $0x1,%al
<432>:[Jje 0x400c08 <136>

57 global_var += 1;
<136>: mov 0x200b76 (%rip), %$eax
<142>: add $0x1, $Seax
<145>: mov $eax, 0x200b6d ($rip)

58 }else {

59 global_var += 2;
<438>: mov 0x200a48 (%rip), $eax
<444>: add $0x2, $eax
<447>: mov seax, 0x200a3f (5rip)

6 }

61 } while(temp < size);
<151>: mov 0x200b97 (%rip), $eax
<157>: cmp Sebx, seax
<159>:F jge 0x400d53 <467>
<453>: mov 0x200a69 (%rip), $eax
<459>: cmp sebx, seax
<461>:F gL 0x400c25 <165>

Fig. 9 Code with variable temp = 0;
misprediction rate do/{
temp++;
random_number (result);
if ((result % K) == 0){
global_var += 2;
}
} while(temp < size);

rarely evaluates to true), the measured value converges to the naive prediction, but
for intermediate values the measured value is slightly above the curve. This suggests
that the branch prediction unit tries to identify patterns in the random values instead
of merely falling back to always predicting false, just because false is more
frequent. Interestingly, this non-naive behavior of the branch prediction unit leads
to more mispredictions than the naive approach of always predicting false would

have led to.

26

Fig. 10 Controling the
misprediction rate

A. Danalis et al.

s T T T T —— T T T .
2.5 X Measured executed conditional branches ===

2.0*(K-1.0)/K + 3.0/K
24 | \
2.3

21 C
M,

Conditional Branches Executed per lteration
N
N
/

3.3 Event Categories

As we mentioned earlier, one of the goals of this work is to automatically categorize
native events based on the hardware features they measure. The main categories for
branch-related instructions are the following five:

CE:

CR:

Conditional Branches Executed. This type of event counts the number of
times a branch instruction that depends on a condition is executed by the hard-
ware. Such instructions are generated from high-level language statements that
affect the control flow, such as IF, or loops—where the conditional branch is
used for the termination of the loop. Examples from the x86 instruction set are
jel/jne for “jump if (not) equal,” jge for “jump if greater or equal,” j1 for
“jump if lesser,” and so on. Note that the instruction is counted as executed even
if it executed speculatively, based on the misprediction of a previous branch (as
discussed in Sect. 2). Also, a branch does not have to be taken to be considered
executed. For example, the branch 1f(0 == 1) will never be taken but
the hardware will still execute it to decide not to take it (assuming the compiler
did not optimize it away).

Conditional Branches Retired. This type of event involves the same instruc-
tions as the event above (i.e., je, jne, jge, j1, etc), but in this case the
execution of a branch has to be committed to architectural state for it to be
counted as retired. This means that either (a) the execution of the branch was
not part of speculative execution, or (b) the execution of the branch was part of
speculative execution and the speculation was proven correct. Section 2 con-
tains an extensive discussion of the difference between executed and retired
instructions.

Conditional Branches Taken. This type of event counts only the branches
where the condition evaluated to true and the branch was actually taken. For
this type of event, the differentiation between executed and retired is

Counter Inspection Toolkit: Making Sense Out of Hardware Performance Events 27

microarchitecture specific, as not all CPUs, even from the same vendor, offer
both versions.

D: Direct Branches Executed. This type of event counts the number of times an
unconditional branch instruction is executed by the hardware. Such instruc-
tions are commonly generated from compilers to support the control flow of
if-then-else statements, or to translate high-level language statements
such as goto.

M: Branches Mispredicted. This type of event counts the number of times the
branch prediction hardware made a wrong prediction. For example, if it were
to predict that a branch will be taken because it predicts that the condition
will evaluate to true, but it is not taken because the condition turns out to be
false.

In order to categorize the native events of an architecture in these five groups, we
wrote a set of microbenchmarks that all contain branch instructions, some of which
are shown in Fig. 11. As can be seen from the figure, the benchmarks are similar in
many ways, but they also diverge from one another. As a result, an event that falls
in any of the five categories (CE, CR, T, D, M) should give a set of values (when
measured for the different benchmarks) that is not the same across all benchmarks.
Furthermore, depending on the category of the event, the set of values for the different
benchmarks will be different. Therefore, using the output of these benchmarks one
could categorize events into classes.

In the following section we discuss the approaches we took to automate the clas-
sification of different events based on these benchmarks, as well as the lessons we
learned.

3.4 Analysis of Benchmark Results

All the analysis techniques we have tried so far rely on the same basic methodology.
Specifically, for each event that we are trying to classify we run each benchmark
multiple times, varying the iteration count (which is controlled by the variable size)
so that we get a curve from each benchmark for each event.

Our first attempt to associate events with categories was by using the Pearson
correlation coefficient [3]. The idea was that a given benchmark stresses a particular
category of events, therefore each benchmark would produce a growing curve for
the events that belong to this category and a flat curve for all others. Let us take the
code shown in Fig. 11a as an example, and let us call it bench1, for simplicity. Now,
consider that for every possible native event on a system, we make multiple runs of
benchl, every time setting a different value to the variable size. This benchmark is
expected to only trigger events that measure conditional branches (CE and CR) and
taken branches (T). Therefore, in the data sets resulting from these runs we should
witness a correlation between the control variable size and the measured variable
only for events that measure conditional branches (CE and CR) and taken branches

28 A. Danalis et al.

do({ do{
global_varz += 2;
if (temp < (size/2)){ if (temp < global_var2) {
global_var2 += 2; global_varl += 2;
} }
random_number (result); random_number (result);
temp++; temp++;
}while(temp < size); }while(temp < size);
(a): {2,2,1.5,0,0} (b):{2,2,1,0,0}
do({ do{
random_number (result);
global_var2z += 2; global_varz += 2;
if (temp > global_var2){ if ((result % 2) == 0){
global_varl += 2; global_varl += 2;
} }
random_number (result); random_number (result);
temp++; temp++;
}while(temp < size); }while (temp < size);
(©):{2,2,2,0,0} (d):{2,2,1.5,0,0.5}
do{ do{
random_number (result); global_var2 += 2;
global_var2 += 2; if (temp < global_var2) {
if ((result % 2) == 0){ global_varl += 2;
global_varl += 2; goto zz;
} }
random_number (result);
temp++; zz: temp+t++;
random_number (result);
}while(temp < size); }while(temp < size);
(e): {2.5,2,1.5,0,0.5} :{2,2,1,1,0}
do{
global_var2 += 2;
temp++;
}while(temp < size);

(2):{1,1,1,0,0}

Fig. 11 Benchmark kernels and their expected values for the branch event categories (CE, CR, T,
D, M)

(T). While the correlation coefficient does distinguish the relevant events from the
majority of the irrelevant ones, it proved to be a very crude tool unfit for automatic
categorization. There are two reasons for this failure. Firstly, we witnessed a few false
positives due to noise, and multiple false positives due to events that are completely
unrelated to branches (i.e., number of executed instructions), but are legitimately
correlated with the iteration count. Second, this technique has a fundamental flaw in

Counter Inspection Toolkit: Making Sense Out of Hardware Performance Events 29

that most of our microbenchmarks trigger events from more than one branch category
at the same time, and this technique is unable to differentiate between them.

A better solution is to use the data from each benchmark to calculate a slope
for each event using least squares fitting. Each of our benchmarks is expected to
trigger a known number of events in each category, per iteration, as shown in the
captions in Fig. 11. Taking again bench1 as an example and running it multiple times
(while varying size) for each native event will generate a unique data set for that
event. Consider now that we have such a data set by running bench1 and measuring
event E; (e.g., “BR_INST_EXEC : TAKEN_COND”). Fitting this data set using least
squares will generate a measured slope, B,,. Then this slope can be compared with
the expected slope, ., for each event category—so for benchl we would compare
B against the values 2, 2 and 1.5, as shown in the caption of Fig. 11a. If 8,, matches
one of these values, then the event E; belongs to the corresponding category. Using
the example of “BR_INST_EXEC : TAKEN_COND,” we expect the measured slope
to match the value 1.5, which reveals that this event belongs to the category “T
(conditional branches taken).”

4 Cache-Related Events

The degree to which a code is reusing the caches of a CPU usually has a substantial
effect on performance. To help assess how well cache reuse is achieved by an appli-
cation, hardware vendors offer multiple events that count different behaviors of the
cache hierarchy. Unfortunately, the complexity of modern cache subsystems has led
to multiple such events, sometimes with non-obvious names and functionalities.

To assist developers in choosing which event to use, and understanding what each
event measures, we used microbenchmarks that stress the cache subsystem. The key
idea underlying our codes is to control the way memory is accessed, as well as the
amount of memory that is accessed, and observe how the measured events change.

We use a technique known as pointer chaining (or pointer chasing), which is
common in the benchmark literature [4—6]. The basic idea is to use an array of
integers, each long enough to hold a pointer (uint64_t). Then, each element
of the array is made to point to another element of the array following a random
pattern. This creates a “pointer chain.” After this setup phase, the program can start
a “pointer chase” where the first element of the array is accessed and the value it
contains becomes the next element to be accessed, and so on.

The setup of the array can happen off-line, so even an expensive pseudo-random
number generator (RNG) can be used, such as the function random () —commonly
found in POSIX and BSD systems—which employs a non-linear, additive feedback
and has a period of ~ 16 - (23! — 1). Using such an RNG, the generated pattern
becomes exceedingly difficult for the prefetching hardware to guess.

Figures 12 and 13 show the results of running our memory access benchmark
with a variable array size while measuring the value of different events. As can be
seen, the values of the different events show sharp transitions from 0 to 100% at

30 A. Danalis et al.

Fig. 12 Cache HIT related

events 100 \ 4

80 L1 HIT —e— il
L2 HIT ——

o L3 HIT |

40 + g

Average count per 100 accesses

20 ¢ L l
= — ,,_LL._,,,.,L AT Tt T DN,

16 64 256 1 0221 4096 16384 65536
Buffer size in KB

Fig. 13 Cache MISS related ‘ ‘ ‘

events 100 e P R AL AN R X e
[}
(03
[7]
8 8ol q 1
S L1 MISS —— i
o L2 MISS
o
= L3 MISS —a—
5 601 1
o
= d
=3
8 40+t i
[}
(=)
o
[
Z 20f y i
FRSER B e B aa /AN Bl o pelf R oAoaEERg-5 o
16 64 256 02 4096 1638 65536

Buffer size in KB

the boundaries of the different caches—in this example, L1 = 32 KB, L2 = 256 KB
and L3 = 32MB. These sharp transitions can function as signatures that enable us to
categorize events based on whether they measure a hit or a miss, and which cache
level they relate to.

Another interesting behavior that we can probe with our microbenchmarks is
prefetching. One can assume that when a miss occurs, the cache fetches more con-
secutive lines than the one requested speculatively, expecting spatial locality in future
memory accesses. If this is the case, then altering the minimum distance between
memory accesses (i.e., changing the size of our minimum accessible unit) should
result in a different hit rate. In Fig. 14 we show three curves that correspond to three
different minimum unit sizes on an architecture where the actual L2 line size is 64B.
Indeed, even when the buffer size exceeds the size of the L2 (256 KB), for small unit
sizes the hit rate remains surprisingly high. However, when the unit size increases,
which means that the additional consecutive lines are never accessed, the hit rate
sharply drops to a very small value when the buffer size exceeds the size of the L2
cache.

Counter Inspection Toolkit: Making Sense Out of Hardware Performance Events 31

Fig. 14 Effect of unit size 100
on L2 hit ratio 90

- " unit size= 64B —e—

r unit size=128B 1
80 | unit size=256B —#— |
70 1
60 b
50 1
40 1

30 1

Average count per 100 accesses

20 b

10t 1
o ‘ ‘ ‘ ‘ ‘ ‘ ‘

16 32 64 128 256 512 1024 2048 4096
Buffer size in KB

Fig. 15 Effect of block size
on L2 hit ratio

ppb=4 —@—
ppb=8 =—f— -
ppb=16

ppb=32 —¥—
ppb=33 —@— |
ppb=34

ppb=35 —w— 1

Average count per 100 accesses

256 768 1280 1792 2304 2816 3328 3840
Buffer size in KB

Figure 15 shows a different experiment that also tests aspects of prefetching.
Here, we kept the minimum unit size constant (128B) across runs, but we altered
the way we created the pointer chains. Namely, regardless of the buffer size, the
buffer is segmented into logical blocks and each block has its own chain. Therefore,
all the elements in the first block are accessed first, then all the elements in the
second block, and so on. The rationale behind this design is to restrict the number
of operating system pages in each block so that the number of translation lookaside
buffer (TLB) misses is minimized during pointer chasing (since TLB misses are
often more expensive than cache misses, and pollute the L3 cache, and thus affect
the behavior of the memory hierarchy). As the size of the logical blocks grows,
pressure on the cache prefetcher increases, since more and more pages need to be
monitored. Indeed, as can be seen in Fig. 15, when the number of pages per block
(ppb) is 16 or less, the hit rate remains high even past the size of the L2 cache (*30%).
However, as the number of pages per block grows beyond 32, even for values barely

32 A. Danalis et al.

above 32, the cache hit rate drops quickly, all the way to almost zero. This behavior
can then be used to categorize events that relate to cache prefetching.

4.1 Assisting Developers with Code Optimization

As we mentioned earlier, one of the main driving forces behind this work is to assist
performance-conscious application developers in understanding the behavior of the
hardware so they can optimize their codes. As a result, we are interested in behaviors
that are demonstrated by microbenchmarks and can be used to make design decisions
in larger applications.

Consider a system with an L1 cache of size 32 KB and an application that accesses
a buffer of size 32 KB (or less), such that smaller blocks, e.g., 4 KB, are accessed one
after the other sequentially—instead of the application accessing elements spread
out in the whole 32 KB buffer. Consider also that after the code accesses the last
block, it goes back to the beginning of the buffer and accesses all the blocks again,
and this loop continues for many iterations. This behavior is shown schematically
in the first line of Fig. 16. Since the buffer fully fits in the L1 cache, there will
be good cache reuse and therefore low average memory access time. This case is
shown graphically in the first line of Fig.16. However, if we grow the buffer to
32 + 4 = 36 KB something interesting happens. When the application now accesses
the last block, which does not fit in the L1 cache along with all previous ones, 4 KB
from the previously accessed data has to be evicted. Since the very first block was
the least recently used (LRU) data, and since LRU is a popular replacement policy,
the cache will evict the whole first 4 KB block. As a consequence, when the code
comes around to access the first block again, that block will not be in the L1 cache.
Even worse, these new accesses to the first block will evict the second block, which
is now the least recently used one. As the code continues, each block will evict the

Fig. 16 Access patterns Fits in L1 32KB
with and without offset No AN AN AN AW AN AN AN

Eviction

36KB
offset=0 m AN r\m
Cascading [© [N" [N [N [N WYX
Eviction |, _#_ A, :

36KB
offset=1 aNL/ANN AN AN AN AN AN AN

Minimal
Eviction \ v v UV UV

Counter Inspection Toolkit: Making Sense Out of Hardware Performance Events 33

Fig. 17 Cache replacement . LNy e s A‘A — vAv v JA T A'u' T
and access pattern DOCESOSERTIRRSCTRES
35 1
2]
c
s 3f .
(0]
€
E 25} 1
1]
173
8 2of A
2 offset=0 —@—
2 15 L offset=1
@ e offset=2 ——
S | |l%p offset=4
2 A
0.5 1
P A R R R U R B

o

0 16 32 48 64 80 96 112 128
Buffer size in KB

next, and every memory access will lead to a miss in the L1 cache, so it will be served
at the latency of the L2 cache. This behavior is shown in the second line of Fig. 16.

However, if the application was written by someone aware of this behavior, much
better locality could have been achieved. Specifically, if after the last 4 KB block is
accessed the code skips the first block and accesses all others, leaving the first block
for last, then this cascading series of evictions would be interrupted and most of the
blocks would be served from the L1, leading to a much lower average access time, as
shown in the last line of Fig. 16. Hereafter, we will use the term offser = 1 to describe
this approach. Growing the buffer by another 4 KB block would nullify the benefits
of this technique, but using offset = 2 would still work, as would larger offsets for
larger buffers. The efficiency of this technique is demonstrated in the performance
graph shown in Fig. 17, where we show the result of using these access patterns on
a machine with L1 latency &~ 1ns and L2 latency ~ 4 ns.

5 Categorizing Events Automatically

As we discussed in Sect. 3.4 the count of branch events grows linearly as we increase
the iteration count of our benchmarks. Cache events, however, tend to follow step
functions that jump abruptly between extreme values. Nevertheless, there are ways
to automatically categorize events from both groups: by turning the information we
generate through our benchmarks into signatures. In Table 1 we show the expected
values for the branch event categories we described in Sect. 3.3 for all the benchmarks
we showed in Fig. 11. As it is easy to see from the table, no two rows are identical.
Therefore, if for every event that we test we use the results of all benchmarks together,
then we obtain a signature that is unique for each event category.

To make the concept of the signature clearer, consider as an example that we
perform a test where we run these seven benchmarks, and in every run we measure

34 A. Danalis et al.

Table 1 Expected values for different branch event categories across multiple benchmarks

Benchl Bench2 Bench3 Bench4 Bench5 Bench6 Bench?7
CE 2 2 2 2 2.5 2 1
CR 2 2 2 2 2 2 1
T 1.5 1 2 1.5 1.5 1 1
D 0 0 0 0 0 1 0
M 0 0 0 0.5 0.5 0 0

the native event “BR_INST_EXEC:ALL_COND.” We run each benchmark multiple
times, and in every run we vary the iteration count. Subsequently, we process the
measurements taken from each benchmark to obtain a slope. If the slope values we
obtain from the different benchmarks are “2, 2,2,2,2.5,2, 1” then by consulting
this table we can uniquely identify this native event as belonging to the category
“CE” (conditional branches executed).

In reality, our measurement will contain noise, so the values acquired from mea-
surements are unlikely to exactly match the values in this table. To address the noise
and suppress irrelevant native events the measurements of which happen to have a
slope similar to an expected one, we also incorporated the correlation coefficient (%)
of the fitting into our “slope goodness function,” which is presented below.

goodness = e 2 Bnr’ =)’ (1)

We chose this formula because it has the shape of the normal curve, which is
forgiving for small variations, but quickly becomes punishing for larger ones. As
a result, when the measured slope §,, is close to the expected slope B, and the
correlation coefficient 72 is very close to one (indicating a good fit), then this formula
will produce a number very close to one. However, if the measured slope diverges
from the expected slope, or if the correlation coefficient is low, then the formula will
produce a number close to zero.?

For each native event E; the seven different benchmarks will produce seven dif-
ferent measured slopes, B, B2 --- B;. Using this formula we can compare these
slopes against the different rows of Table 1 and get a quantitative assessment of the
proximity of event E; to the category represented by each row.

As we mentioned earlier, the benchmarks that stress cache-related events do not
produce slopes, but rather step functions. However, these step functions can be readily
converted to signatures if we ignore the multiple values at each plateau and we only
keep the actual transitions, which as we showed in Figs. 12 and 13 are unique for
each cache event category.

2Qther, more sophisticated goodness functions, such as Pearson’s X2 test [7], could be used to assist
in the analysis of the measurements, but in our experiments we found that the simple formula in
Eq. | is sufficient.

Counter Inspection Toolkit: Making Sense Out of Hardware Performance Events 35

As part of our research effort, we also developed a long short-term memory
(LSTM) neural network that we trained to recognize the patterns produced by our
benchmarks. It proved to by fairly successful when we tried it on architectures other
than the one we trained it on (i.e., we trained it on Intel x86 and used it on IBM
Power8), but the details of this approach are outside the scope of this paper.

Using our benchmarks along with the analysis described in this section produces
an automatic categorization of events in a system where the user does not already
know which native events belong to each category. Conversely, in a system where
the user knows what each native event is supposed to measure, our automatic event
categorization can be used for verification of specific native events.

6 Related Work

There are several tools and APIs for accessing hardware counters. PAPI [1] is one
of the most widespread, due in part to its strength as a cross-platform and cross-
architecture API. PAPI provides short descriptions of the events that can be measured,
but these descriptions are not always self-explanatory, especially so for application
developers who are not experts on a given architecture. For Linux platforms the
perf tool [8] makes use of the perf_event API, which is part of the Linux kernel.
perf_event is even more low-level and the information returned requires considerable
interpretation to be useful to application developers.

Further, processor vendors supply tools for reading performance counter results,
such as Intel VTune [9], Intel VTune Amplifier, Intel PTU [10], and AMD’s CodeAn-
alyst [11], but none of these tools and APIs comes with a set of benchmarks whose
behavior is easy to understand and yet demonstrates behaviors of the underlying
hardware that affect application performance.

The closest to the work presented in this paper is the likwid lightweight perfor-
mance tools project [12]. In addition to enabling the user to access performance
counters through direct access to the hardware, likwid offers a set of microbench-
marks that stress different aspects of the hardware. However, unlike our work, these
microbenchmarks are written in a custom low-level language that maps directly to
x86 assembler and are aimed at calibrating the tool—not to educate application devel-
opers about the higher-level meaning of different events, or to help them discover
the meaning of events on diverse architectures.

In terms of system benchmarks, there are multiple projects [5, 6, 13—19] aiming
to achieve different goals, such as analyzing the micro-architecture of a specific
platform in great detail, or offering an extendable base of micro-kernels so that more
complex benchmarks can be built on top of them. While we have learned valuable
lessons from several of these efforts, and we have borrowed techniques such as the
pointer chaining, none of these benchmarks was developed having in mind the goals
of characterizing hardware events to provide application developers with a more
intuitive high-level understanding of the concepts that are being counted.

36 A. Danalis et al.

7 Conclusions

In this paper we presented our work on the Counter Inspection Toolkit, a collection
of microbenchmarks and analyses developed in an effort to categorize and abstract
hardware events and map them to higher-level performance concepts. The driving
force behind this effort has been our desire to illuminate the way for application
developers who are keen on performance optimization, but are not experts on every
esoteric detail of the latest hardware micro-architecture.

We discussed several interesting and non-obvious findings, we demonstrated the
feasibility of categorizing events into logical groups, and discussed how automatic
analyses can be employed to assist in this categorization. In future work, we are
planning to extend the toolkit by adding multithreaded benchmarks that stress parts
of the hardware related to resource sharing. We also plan to publicly release the code.

Acknowledgements This material is based upon work supported by the National Science Foun-
dation under Grant No. 1450429.

References

1. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A portable programming interface
for performance evaluation on modern processors. Int. J. High Perform. Comput. Appl. 14(3),
189-204 (2000)

2. Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume
3B: System Programming Guide, Part 2 (2017)

3. Pearson, K.: Notes on regression and inheritance in the case of two parents. Proc. R. Soc. Lond.
58, 240-242 (1895)

4. Danalis, A., Luszczek, P., Marin, G., Vetter, J.S., Dongarra, J.: Blackjackbench: portable hard-
ware characterization with automated results analysis. Comput. J. 57(7), 1002 (2014)

5. McVoy, L., Staelin, C.: lmbench: Portable tools for performance analysis. In: Proceedings of
the Annual Technical Conference on USENIX 1996 Annual Technical Conference ATEC’96,
pp. 23-23. USENIX Association, Berkeley, CA, USA, 24-26 Jan 1996

6. Mucci, PJ., London, K.: The CacheBench Report. Technical report, Computer Science Depart-
ment, University of Tennessee, Knoxville, TN (1998)

7. Pearson, K.: On the criterion that a given system of deviations from the probable in the case of
a correlated system of variables is such that it can be reasonably supposed to have arisen from
random sampling. Philos. Mag. 5(50), 157-175 (1900)

8. Molnar, L.: perf: Linux profiling with performance counters (2009). https://perf.wiki.kernel.
org/

9. Wolf III, J.H..: Programming Methods for the Pentium III Processor’s Streaming SIMD Exten-
sions Using the VTune™ Performance Enhancement Environment. Intel Corporation (1999)

10. Intel Performance Tuning Utility. http://software.intel.com/en-us/articles/intel-performance-
tuning-utility/

11. Drongowski, P.J.: An introduction to analysis and optimization with AMD Code Analyst™
Performance Analyzer. Advanced Micro Devices, Inc. (2008)

12. Treibig, J., Hager, G., Wellein, G.: LIKWID: a lightweight performance-oriented tool suite for
x86 multicore environments. In: Proceedings of the First International Workshop on Parallel
Software Tools and Tool Infrastructures, September 2010

https://perf.wiki.kernel.org/
https://perf.wiki.kernel.org/
http://software.intel.com/en-us/articles/intel-performance-tuning-utility/
http://software.intel.com/en-us/articles/intel-performance-tuning-utility/

Counter Inspection Toolkit: Making Sense Out of Hardware Performance Events 37

13.

14.

15.

17.

19.

Dongarra, J., Moore, S., Mucci, P.,, Seymour, K., You, H.: Accurate cache and TLB characteri-
zation using hardware counters. In: Marian Bubak, G., van Albada, D., Sloot, PM.A., Dongarra,
J. (eds.) International Conference on Computational Science, volume 3036 of Lecture Notes in
Computer Science, pp. [11:432-439. Krakow Poland, June 2004. Springer, Heidelberg. ISBN
3-540-22114-X

Duchateau, A.X., Sidelnik, A., Garzaran, M.J., Padua, D.A.: P-ray: a suite of micro-benchmarks
for multi-core architectures. In: Proceeding of the 21st International Workshop on Languages
and Compilers for Parallel Computing (LCPC’08)

Gonzalez-Dominguez, J., Taboada, G.L., Fraguela, B.B., Martin, M.J., Tourio, J.: Servet: a
benchmark suite for autotuning on multicore clusters. In: IEEE International Symposium on
Parallel & Distributed Processing (IPDPS), pp. 1-10. IEEE Computer Society, Atlanta, GA,
19-23 Apr 2010. https://doi.org/10.1109/IPDPS.2010.5470358

. Molka, D., Hackenberg, D., Schone, R., Muller, M.S.: Memory performance and cache

coherency effects on an intel nehalem multiprocessor system. In: Proceedings of the 2009
18th International Conference on Parallel Architectures and Compilation Techniques PACT
’09, pp. 261-270, Raleigh, North Carolina, September 12—-16. IEEE Computer Society, DC,
USA, Washington (2009)

Staelin, C., McVoy, L.: mhz: Anatomy of a micro-benchmark. In: USENIX 1998 Annual
Technical Conference, pp. 155-166. USENIX Association, New Orleans, Louisiana, 15-18
Jan 1998

. Yotov, K., Jackson, S., Steele, T., Pingali, K., Stodghill, P.: Automatic measurement of instruc-

tion cache capacity. In: Proceedings of the 18th Workshop on Languages and Compilers for
Parallel Computing (LCPC), pp. 230-243. Springer, Hawthorne, New York, 20-22 Oct 2005

Yotov, K., Pingali, K., Stodghill, P.: Automatic measurement of memory hierarchy parameters.
SIGMETRICS Perform. Eval. Rev. 33(1), 181-192 (2005)

https://doi.org/10.1109/IPDPS.2010.5470358

ASSIST: An FDO Source-to-Source)
Transformation Tool for HPC Qeckir
Applications

Youenn Lebras, Andres S. Charif Rubial, Romain Dolbeau
and William Jalby

Abstract The complexity and the diversity of computer architectures have dramat-
icaly evolved over the last decade, which makes it impossible to manually optimize
codes for all these architectures. In addition, compilers must remain conservative
with respect to their optimization choices because of their static cost model. One
way to guide them is to use feedback data from data profiling of a representative
training dataset (FDO/PGO) for a given application. It then becomes possible, based
on that knowledge, to add specific compiler directives and/or flags to enhance perfor-
mance. Moreover, automatic transformations simplifying portions of the application
(e.g. specialization) can be applied. In this paper we present ASSIST, a directive-
oriented source-to-source manipulation tool that aims at providing such assistance.
The tool is integrated into the MAQAO toolset and takes advantage of all the avail-
able static and dynamic profiling data produced by the other tools. It also features a
set of code transformations triggered by directives. The combination of both leads to
an autotuning process that helps users to keep their code as generic as possible whilst
also benefiting from a performance gain related to feedback or user knowledge. We
demonstrate how we can build a compiler’s PGO-like tool and compare our first
results to the Intel compiler PGO mode.

Y. Lebras - A. S. Charif Rubial - W. Jalby ()

UVSQ/Exascale Computing Research, 45 avenue des Etats Unis,
78000 Versailles, France

e-mail: william.jalby @uvsq.fr

A. S. Charif Rubial

PeXL, Versailles, France

Y. Lebras - A. S. Charif Rubial - W. Jalby
Exascale Research Computing, Versailles, France

R. Dolbeau
Atos, Bezons, France

© Springer Nature Switzerland AG 2019 39
C. Niethammer et al. (eds.), Tools for High Performance Computing 2017,
https://doi.org/10.1007/978-3-030-11987-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11987-4_3&domain=pdf
mailto:william.jalby@uvsq.fr
https://doi.org/10.1007/978-3-030-11987-4_3

40 Y. Lebras et al.

1 Introduction

The new generation of high performance cores/processors is heavily relying on
increased vector length and advanced memory hierarchies to deliver higher perfor-
mance levels. Such trends stresses the importance of data access optimizations and
vectorization. The compiler is the first classical approach to address these issues.
Unfortunately they suffer from two major limitations: first their search for code
transformations is de facto limited because searching through a huge space of trans-
formations without specific “tips” is extremely expensive and second because the
choice of the applied transformation is entirely based on static information, running
the risk of missing the right target.

The code developer with his knowledge of the code which might be augmented
by the use of performance tools to characterize code behavior can help the compiler
in identifying the right transformations. He can annotate source code either through
custom directives [5, 31, 35], comments [19, 36] or using Domain specific Language
(DSLs) [10, 12, 13, 27, 33]. Directives are simple but less powerful when compared
to DSLs which can handle very advanced patterns at the price of complexity. From
the point of view of a a regular application developer, directives provide the best
compromise (expressiveness v.s. complexity). However, the resulting source code
may end up bloated by optimization transformations (e.g. tiling), special cases or even
useless modifications. It is even worse if users need to target multiple architectures
(e.g. x86 and GPU or ARM). Finally, all of these source code edits are put on
developers shoulders, impacting its productivity, creating the risk of inserting useless
or detrimental annotations or much worse, introducing bugs.

A very promising approach to relieve the user from these tedious edits is to use
feedback data optimization (FDO). Feedback data is any kind of data that can be
gathered on a code and can be used to characterize it from a performance perspective.
It should be noted that in the literature FDO and Profile Guided Optimizations (PGO)
have the same meaning. We will use FDO in the rest of this article because, in our
opinion, it is more generic. For instance feedback data could be a small trace which
differs from a profile. One example of FDO is the FDO modes embedded with
production compilers (Intel, GCC and more recently LLVM) known as pgo [24]
and autofdo [9, 20]. A typical FDO process encompasses three steps: producing an
instrumented binary using a special compiler flag(s); executing the resulting binary
to obtain a profile; and finally, using feedback data during the compilation process to
produce a new version that is supposed to be more efficient. However, in the current
FDO implementations the level of information gathered at run time is limited and
second the transformation space searched is also limited. Both limitations have a
strong detrimental impact on the efficiency of the transformations applied. We will
demonstrate that by being more aggressive on information gathering combining static
and dynamic information, and on code transformations, substantial performance
gains can be obtained.

ASSIST: An FDO Source-to-Source Transformation Tool for HPC Applications 41

This paper presents ASSIST, a directive-oriented source-to-source manipulation
tool. It is able to guide code transformations based on static and dynamic feedback.
It aims at providing assistance with respect to productivity and performance effi-
ciency. The main contributions of our tool are to provide: a new open source FDO
tool using both static and dynamic feedback while existing ones only use dynamic
feedback; a more flexible alternative to compilers PGO/AutoFDO modes while being
complementary; elaborated transformations such as loop and function specialization
including our block vectorization transformation which helps the compiler to harness
vectorization.

This paper is organized as follows: Section 2 provides an overview of our
approach. Then Sect.3 describes the design and implementation of the tool. The
following Sect. 4 presents the available transformations. In Sect.5 we will study the
experimental results. Related work is listed in Sect. 6 before concluding and men-
tioning future work in Sect.7.

2 Background and Goals

The MAQAO toolset [3] focuses on the performance evaluation and optimization of
binary applications. The toolset features multiple tools [7, 8, 22, 29] which share the
same rationale, namely pinpointing issues at source level and providing users with
hints and even workarounds to be applied. In order to efficiently use these tools, a
methodology [4] has been proposed. It aims at providing a way to filter all the data
collected from the performance evaluation tools and classify them according to their
return on investment (ROI) metrics.

Working at binary level has the advantage of evaluating the code that will really
be executed (i.e. after compiler modifications). However, the main drawback is that
we do not have access to the source code. A match between assembly level and high
level source structures like functions/loops has to be based on debug information
provided by the compiler. According to the optimization level, debug information is
more or less accurate. This is due to the transformations/optimizations (e.g. inlining)
performed by the compiler. It is also impossible to control all code properties that
could help to provide more accurate results when combined with binary analyses.
Enabling MAQAO to deal with source code would allow more accurate analyses.
MAQAQO can pinpoint different kinds of performance issues (i.e. diagnosis). The
next step is to try to fix them at source level.

When performing optimizations on real applications we face three main concerns:
selecting which transformations to apply to fix issues; minimizing code bloating due
to transformations like hand-coded (function/loop) specialization; avoiding having to
apply tedious (when not error-prone) transformations. The main goal of our approach
is to help users increase performance without reducing the programming productivity.

42 Y. Lebras et al.

3 Design and Implementation

Inorder to achieve the goals listed in the previous section, ASSIST must handle source
code manipulation and harness the metrics and analyses produced by MAQAO tools.
Then, we will explain the choice of the selected compiler structure. Finally we will
show how ASSIST can benefit from its integration into MAQAO and vice versa.

3.1 Overview

ASSIST is an open source FDO tool and framework based on the Rose [28] com-
piler infrastructure and integrated into the MAQAO [3, 23] toolset. More details are
provided in the next subsections.

Figure 1 presents an overview of the steps involved in the tool’s operation. The
following section will provide examples illustrating this process.

ASSIST provides users with a simple yet flexible interface that offers two alter-
native approaches to specify transformations. The first one makes use of directives
while the second one is based on a (Lua) script (depicted as Transformation script).
he latest provides a means to completely hide the transformations. For example,
the directive /DIR$ MAQAO UNROLL=4 above a loop triggers the unroll (factor
of 4) of its body, if applicable and by running the following command: magao s2s
-option="“apply-directives” -src=foo.f90 the transformed code can still be compiled
and even reviewed by the programmer if necessary. The source code is parsed and
transformed into an abstract syntax tree (AST) that ASSIST will transform accord-
ingly into a given set of directives or a script file. Leveraging optimization opportuni-
ties is possible when feedback data from MAQAO [3, 23] is available. For example,
to apply the loop count transformation (described in the next section), it is possible to
run maqao s2s -vprof_xp=/path/to/vprof.csv -bin=binary. It will use MAQAO API

ASSIST
Modified
(Annotated) Parsing| Szm:
Source into AST Rewritting e
File AST Modifications System e
4 Iy .f.c.cpp
f.c.cpp L an b\
A\ Guided }:
| b 1
= v
Transformation , MAQAO
skl L Analyses
« ---- Optional

Fig.1 Overview of the tool’s usage

ASSIST: An FDO Source-to-Source Transformation Tool for HPC Applications 43

to search for information about loops and files to handle them and read MAQAO
VPROF results to apply the loop count transformation. Available analyses are based
on MAQAO CQA (code quality) and MAQAO VPROF (value profiling). Finally, the
modified AST is parsed to generate a modified source file as output.

3.2 Compiler Infrastructure

Applying transformations to a given source code requires a set of frontends. In our
case we will give priority to scientific applications (HPC field), hence selecting C,
C++ and Fortran languages. We want an output code that remains at source level and
not in a compiler-specific intermediate representation. That is why we chose to code
our transformation through the manipulation of an AST.

For all these reasons we decided to look for an existing infrastructure instead of
implementing a new one.

There are many compiler available infrastructures and specialized source-to-
source frameworks, but only very few can satisfy our requirements. LLVM [11]
is a compiler infrastructure that allows the manipulation of an AST through a library.
However, it only supports C/C++ languages through Clang. Clang is very useful and
easy to use to analyze an AST and add passes to the compiler but not for performing
source-to-source transformations. Even if theoretically possible, it is impossible in
reality due to a lack of documentation and specialized functions. Transformations
are expected at the IR level. Also there is currently no production Fortran support.
Very recently Flang [16] was introduced as the new Fortran frontend but it is still in
its early phase of development.

Cetus [15] is a compiler infrastructure featuring source-to-source transformation
of C AINSI codes only. DMS [10] is a commercial program analysis and transfor-
mation system. That is why it is not included in our comparison table.

Despite some shortfalls (refer to ASSIST’s git repository) in the management of
the Fortran language that we have managed to overcome, we chose Rose [28]. It is
the most suitable framework given our requirements. It is the only open source and
easy-to-use (i.e. documented) tool capable of manipulating the AST of C, C++ and
Fortran source codes.

Figure 2 presents a summary of the main compiler infrastructures and specialized
source-to-source frameworks. The table lists the requirements and how they are
fulfilled or not. As we mentioned earlier, Rose appears to suit our constraints best.

3.3 Integration into MAQAO

ASSIST is a MAQAO module. That means that it has access to the MAQAO core
(binary and analysis layers) and can also communicate with other MAQAO tools
through an internal API. MAQAO tools deal with binary function and loop objects.

44 Y. Lebras et al.

License | C | Fortran fource-to-sourcpocumentatios Weakness
GPL License
GNU 0SI Misses information
Cetus GPL / e Handle only C
Par4All MIT _ | / _ / Only for parallelism
No fortran when we
stated
LLVM BSD
Now first version of
Flang
EDG license for
Rose BSD C/C++
Orio BSD Only subset of C
to other languages

Requirement OK
Theoretically possible /
Weak
Requirement KO

Fig. 2 Constraints array

Since ASSIST manipulates source code it must perform a mapping between real
source lines and sources lines provided by the compiler through debug information.
That way, ASSIST can establish a link between source and binary functions/loops.
This implementation also allows other MAQAO tools to take advantage of ASSIST’s
ability to analyze and manipulate source code. That is how we extend MAQAO’s
ability to deal with source code.

The current implementation of ASSIST uses three MAQAO modules: LPROF for
profiling (hotspots); CQA for code quality metrics (e.g. vectorization ratio); VPROF
for function and loop value profiling. In this paper we only mention the features that
are used by ASSIST.

4 Supported Transformations

ASSIST features different kinds of transformations, from common ones like loop
unroll to less common ones like loop and function specialization. We did not find
any available tools providing such transformations. Moreover these specialization
transformations have been specifically designed to be combined with the other avail-
able transformations. Block vectorization and loop count transformations are only
available in ASSIST.

ASSIST: An FDO Source-to-Source Transformation Tool for HPC Applications 45

4.1 Common Loop Transformations

The current implementation of ASSIST supports the following common loop trans-
formations: interchange; unroll (including full unroll); strip mine; tile. Other ones
may be added in the future.

4.2 Constant Propagation and Local Dead Code Elimination

Since we can apply multiple transformations we need a means to clean up transformed
code eliminating useless chunks generated by specialization (e.g conditionals). For
that purpose we implemented constant propagation and local dead code elimination.

After the constant propagation, we browse the AST to check all conditional
branches. If a loop is detected with only one iteration, the loop is replaced by its
body and the iteration variable replaced by its value in the whole body. ASSIST also
checks “if” statements, by checking if the conditional expression is always true or
false to replace the whole “if” statement by its “then” body or by its “else” body. To
check if a conditional expression is always true or false, the expression is statically
evaluated. If it is composed of two integers, we compare them with the correspond-
ing operator. If it implicates a variable, ASSIST tries to trace back through previous
assignment statements involving the variable to check if it ends up as a constant and if
this assignment is not the result of an “if”” condition or a loop. If all of the conditions
are true, the variable will be considered as its value and the test continues.

4.3 Specialization

Specialization is the act of creating particular versions of the same code by explicitly
considering specific values of one or more variables. For instance we can specialize
a loop based on special values of the induction variable. Traditionally we want to
handle a loop differently depending on whether it executes a low or a high number
of iterations.

Specialization is not an end in itself but just a means to make optimizations hap-
pen. It is used when possible to simplify in some way a portion of code based on the
knowledge of one or multiple values and their occurrences. As a consequence, the
main drawback of specialization is that it can worsen performance if not used spar-
ingly. To perform either loop or function value profiling we rely on MAQAO VPROF.
Our specialization transformations can be categorized into two transformations; loop
specialization and function specialization.

In the case of function specialization we will usually want to target specific value
combinations. Figure 3 provides such an example. A new specialized function is cre-
ated and the according conditionals are generated. To try to simplify the specialized
code we apply our partial dead code elimination pass.

46

#pragma MAQAO SPECIALIZE(N=4,s={1,10})
void foo (int N, int* a, int* b, int s)
{
int e = s - 10;
if (e > 20) {
for (int i=0; i < N; i++) {
alil = bl[il;

} else if (s > 10) {
for (int i=0; i < N; i++) {
ali]l -= b[i];

} else if (s <= 10) {
for (int i=0; i < N; i++) {
ali] += b[il;
}

(a) Before function specialization

Y. Lebras et al.

void foo (int N, int* a, int* b, int s)
{
int e = s - 10;
if ((N==4)&&(s>0)&&(s<11)) {
return foo_ASSIST_Ne4_sb0_11(a,b,s);
¥
if (e > 20) {
for (int i=0; i < N; i++) {
ali] = b[il;
¥
} else if (s > 10) {
for (int i=0; i < N; i++) {
alil -= blil;
¥
} else if (s <= 10) {
for (int i=0; i < N; i++) {
alil += blil;
¥
}
¥

void foo_ASSIST_Ne4_sb0O_11_eill (intx* a,
int* b, int s)
{
int e = s - 10;
for (int i=0; i < N; i++) {
alil += b[il;
¥
}

(b) After function specialization

Fig. 3 Example of function specialization performed by ASSIST

It is possible to apply as many specialization directives as combinations we target.
Figure 8 in Sect. 5 is an illustration of such a case. In the current implementation
specialization is limited to only integer variables.

4.4 Loop Count Transformation

We saw that loop specialization required an a priori knowledge of loops’ bound
value. This piece of information can be exploited in another way. Intel compilers
offers the ability to specify a loop count (min, max, avg) directive. The compiler
can then make that information available to its optimization passes. By default the
compiler will generally generate multiple variants (e.g. scalar, SSE, AVX, etc.) of the
same source loop at the binary level. However it will generate much fewer variants
by considering loop count data. Helping the compiler in this way throughout the
whole application can provide a significant performance gain (see Sect.5).

ASSIST: An FDO Source-to-Source Transformation Tool for HPC Applications 47

#pragma MAQAO BLOCKVECB #pragma simd
for (int i=0 ; i < 7; i++) { #pragma vector unaligned
ali] += blil for (i = 0; i < 4; i++) {
} ali] += b[i]
}

#pragma simd

#pragma vector unaligned

for (i = 4; i < 6; i++) {
alil += bli]

}

al6] += b[6]

(a) Before (b) After

Fig. 4 Example of Block Vectorization on x86_64 peformed by ASSIST

4.5 Block Vectorization Transformation

We noticed on some occasions that even when the loop bound was hard-coded the
compiler would not vectorize that loop properly. We can check such cases thanks
to MAQAO CQA which offers vectorization metrics. This transformation performs
the following steps on a given loop: force the compiler to vectorize the loop using
SIMD directive; prevent peeling code from being generated using vector unaligned
directive; and adapt the number of iterations to the vector length. Figure 4 illustrates
this transformation.

5 Experiments

In this section we will compare our results with the Intel compiler pgo mode that
we will refer to as IPGO. Intel compilers are neither open source nor free, but they
are available on almost all the HPC clusters and provide better performance in our
tests (compared to GCC and LLVM). The main reason behind this choice of pgo
comparison lies in the lack of FDO tools available for regular users. Our goal is not
to mimic the pgo, rather to present a complementary approach which goes beyond
observed limitations.

All the measurements presented below were gathered on an Intel(R) Skylake SP
based machine (Intel Xeon Platinum 8170 CPU@2,10GHz) with the Intel compiler

48 Y. Lebras et al.

version 17.0.4. Multiple executions (31) were performed to reach statistical stability
and avoid outlier measurement data.

Also, this section presents the experimental results of the transformations offered
by ASSIST based on feedback data and user insights.

Application Pool

Three functional industrial applications were used to test our approach: Yales2 [14],
AVBP [30] and ABINIT [17].

YALES2 is a numerical simulator of turbulent reactive flows using the Large
Eddy Simulation method. It is a finite volume code for unstructured meshes, with an
innovative 4th order spatial scheme for the discretization of convective and diffusive
terms. It is based on the low-Mach number approximations of the Navier-Stokes
equations, which solves an elliptic Poisson equation at each iteration and scales well
to over 16K cores. The MPI version uses subdomain decomposition with adjustable
domain size, allowing efficient cache usage. ASSIST has been tested on two of
their datasets named “3D_cylinder” and “1D_COFFE”. The application is written in
Fortran 2003.

AVBP is parallel CFD code developped by CERFACS that solved the three-
dimensional compressible Navier Stokes equations on unstructured multi-element
grids. It uses third space and time Taylor Galerkin numerical schemes. The code
has been ported and tested up to 200K cores with an 85% strong scaling efficiency
(BG/Q) for a 200M element case (1000 elements per MPI rank). Cache coloring uses
the reverse Cuthill-Mckee method. ASSIST has been tested on two representative
datasets names SIMPLE (helicopter chamber demonstrator combustion simulation)
and NASA (NACA blade simulation). The application is written in fortran 95.

ABINIT is a package allowing users to find the total energy charge density and
electronic structure of systems made of electrons and nuclei (molecules and periodic
solids) within Density Functional Theory (DFT) using pseudopotentials (or PAW
atomic data) and a planewave basis. The application is developped in Fortran 90.

Impact of Loop Value Profiling

Our first FDO optimization is based on knowing loop trip counts obtained by value
profiling using MAQAO VPROF. When loops exhibit a complex control flow due to
multi-versioning, knowing the trip count can help the compiler simplify the decision
tree. We will refer to the loop count transformation as LCT for the remaining part of
this section.

Figure 5 presents the speedups obtained with LCT, IPGO and the combination
of both for each application/dataset. Both LCT (15%) and IPGO (14%) provide
a performance gain for the Yales2 using 3D_cylinder as a dataset. The combina-
tion of both LCT and IPGO raises the gain to 19%. For the second Yales2 dataset
(1D_COFFE) both endeavors only reach 5%. However, the combination does not
pay off. For AVBP, running the SIMPLE data set, we observe a negligible speedup.
However, for AVBP individual contributions of IPGO and ASSIST can be partially

ASSIST: An FDO Source-to-Source Transformation Tool for HPC Applications 49

1.2

Speedup (higher is better)

1D COFFE 3D Cylinder SIMPLE NASA
Yales 2 AVBP

ASSIST LCT
IPGO 1
ASSIST LCT + IPGO s

Fig. 5 Impact (speedup) of ASSIST LCT when compared to IPGO

combined. IPGO provides a 10% speedup on AVBP with the NASA dataset while
LCT only achieves 7%. The combination reaches 12%.

This study shows that providing the compiler with loop trip count feedback (min-
imum, average and maximum values) results in a performance gain. We can also
observe that the combination with pgo can lead to a higher gain.

Specialization

While optimizing applications, we noticed that we often resort to function and/or loop
specialization before applying other transformations. The following two examples
show how coupling specialization with other transformations can provide significant
performance gain.

AVBP

In this example we couple both specialization and block vectorization transforma-
tions applied to the ten most time-consuming functions. We first apply loop and
function specialization separately, then we apply block vectorization on the most
efficient version. We also apply the LCT and the IPGO on the original version to
verify whether the compiler is able to perform better using additional guidance.

Figures 6 and 7 compare the speedup ratios of each version with the original one.
Function and loop specialization are performed separately and presented here to
show their individual impact.

We observe that block vectorization can offer a 2.6x performance gain while the
loop and function specialization only achieve, at best, a speedup of 1.5x. Performing
only loop or function specialization may be counterproductive in some cases because
of the induced complexity of the control flow if no further induced optimizations are
possible.

When the compiler fails to vectorize a loop properly, the block vectorization trans-
formation is very effective given that it explicitly exposes a simpler loop structure

50 Y. Lebras et al.

2.6
28 ool
22 -

Speedup (higher is better)

ASSIST LCT

IPGO ==

ASSIST function specialization only I

ASSIST Loop specialization only

ASSIST block vectorization on best specialization C—1

Fig. 6 AVBP using the SIMPLE dataset—Speedups by function before and after applying transfor-

mations with ASSIST (block vectorization, function/loop specialization, LCT) and IPGO compared
with the original version (Higher is better)

115

Ll foemme e

1.05

0.95

0.9

Speedup (higher is better)
=

Wall Time

ASSIST LCT s

IPGO =1

ASSIST function specialization only I

ASSIST Loop specialization only

ASSIST block vectorization on best specialization C—

Fig. 7 AVBP using the SIMPLE dataset—Speedups of the wall time before and after applying
transformations with ASSIST (block vectorization, function/loop specialization, LCT) and IPGO
compared with the original version (Higher is better)

ASSIST: An FDO Source-to-Source Transformation Tool for HPC Applications 51

with no peel or tail loops to the compiler. In our case, we can evaluate the vec-
torization ratio of a loop using MAQAO CQA; ASSIST can automatically trigger
the transformation from the CQA results by extracting several items of information,
like the vectorization ratio metric, the file and the function where the loop is. The
block vectorization transformations force the compiler to vectorize small loops with
a small number of iterations; the compiler also fully unrolls these loops.

ABINIT

In this example, ASSIST is fully driven by the user. At first, a full profiling of the
code is performed, followed by value profiling on one of the main hotspots of the
application. Three input parameters were found to be of importance.

First, the function can be called with two different types of input data, either real-
valued data or complex-valued data. A given test case will almost exclusively use
one or the other. As those data are expressed as an array with one or two elements
in part of the code, specialization of this value simplifies address computations and
vector accesses by making the stride a compile-time constant rather than a dynamic
value.

Second, multiple variants of the algorithm are implemented in the function. Which
exact variant is used depends on two integer parameters. Again, a given test case is
usually heavily biased toward a small subset of possible cases. Specialization to one
case removes multiple conditionals. As the loop nests for a given case appear in
different branches, this removal of conditionals exposes the true dynamic chaining
of loop nests to the compiler with no intervening control flow break.

Once specialized with ASSIST, the function becomes much simpler to study. It
turns out that the dominant loop nest in the function is amenable to loop tiling. A
large array is updated in its entirety inside a loop, a bad pattern for cache usage. Loop
tiling make it possible to updates the array by block, and to only scan and update the
array once. While this work would not be particularly difficult to do by hand, more
than two dozen variants of the loop nest with similar properties appear in the original
function. As the transformed loop adds an extra loop to the nest, complicates indices,
and requires a remainder loop, it is much easier and much more reliable to automate
the transformation process.

Figure 8 shows the directives on an extract of the function, in part (a). Three
specialized variants are produced for the common use cases in our reference test
Ti256, by the first three lines of the figure. The critical loop nest is subsequently
tiled, but only in the specialized version, by the directive immediately above the
loop nest. Part (b) show extracts from the output of ASSIST. The original function
now calls the specialized variants whenever the parameters are appropriate. Every
conditional previously dynamically encountered is now collapsed into that one test.
Below the original function, Fig. 8 also shows the new loop nest with the loop
tiling transformation applied. Only 8 elements (a friendly value for a vectorizer) are
computed in the innermost loop versus the entire array previously. An outer loop has
been added which scans the entire array by block of size 8. In practice, the innermost
loop is removed by the compiler, which fully unrolls and vectorizes it.

52 Y. Lebras et al.

'DIR$ MAQAD SPECIALIZE(choice=1,paw_opt=3,cplex=2)
'DIR$ MAQAD SPECIALIZE(choice=1,paw_opt<3,cplex=2)
!DIR$ MAQAO SPECIALIZE(choice=1,paw_opt>3,cplex=2)
subroutine opernlb_ylm(choice,cplex,paw_opt,...)
if (choice == 1) then

'DIR$ MAQAD TILE_INNER_IF_SPE_choiceel=8

do ilmn=1, nlmn
do k=1,npw
ztab(k) = ztab(k)+ffnl(k,1,ilmn)*cmplx(gxfacs_(1,ilmn) ,gxfacs_(2,ilmn) ,kind=dp)
end do

end do
end if

lend subroutine

(a) Before ASSIST transformations

SUBROUTINE opernlb_ylm(...)

IF ((choice.EQ.1).AND. (paw_opt.EQ.3).AND.(cplex.EQ.2)) then
CALL opernlb_ylm_ASSIST _choiceel_paw_opte3_cplexe2(...)
RETURN

END IF

IF ((choice.EQ.1).AND. (paw_opt.LT.3).AND.(cplex.EQ.2)) then
CALL opernlb_ylm_ASSIST choiceel_paw_opti3_ cplexe2(...)
RETURN

END IF

IF ((choice.EQ.1).AND.(paw_opt.GT.3).AND. (cplex.EQ.2)) then
CALL opernlb_ylm_ASSIST_choiceel_paw_opts3_cplexe2(...)
RETURN

END IF

END SUBROUTINE
SUBROUTINE opernlb_ylm_ASSIST _choiceel_paw_opte3_cplexe2(...)

1t_bound_npw = (npw / 8) * 8
DO 1t_var_k = 1, 1t_bound npw, 8
DO ilmn = 1, nlmn
[DD k = 1t_var_k, 1t_var k + (8 - 1)|
ztab(k) = ztab(k)+ ffnl(k,1,ilmn)* cmplx(gxfacs_(1,ilmn),gxfacs_(2,ilmn),kind=dp
ENDDO
ENDDO
ENDDO

END SUBROUTINE
SUBROUTINE opernlb_ylm_ASSIST_choiceel_paw_opti3_cplexe2(...)

END SUBROUTINE
SUBROUTINE opernlb_ylm_ASSIST_choiceel_paw_opts3_cplexe2(...)

END_SUBROUTINE
(b) After ASSIST transformations

Fig. 8 ABINIT—Example of function specialization coupled with loop tiling, performed with
ASSIST, for the use case Ti-256. Boxes highlight the tiling transformation of the innermost loop

Speed up results are shown in Fig. 9. The original version is at one by definition.
We added IPGO to show the potential of our approach. Specialization offers a small
gain but the dominant issue is still the time spent in the critical loop nest. Adding
tiling offers a large gain of almost 1.8x in total by significantly reducing the memory

ASSIST: An FDO Source-to-Source Transformation Tool for HPC Applications 53

2 18

]

L 16

o

T 14

£

[=d

£ 12

g .]

o0

g]

Q 08

7] ASSIST IPGO ASSIST ASSIST

LCT specialization specialization

only + tiling

Fig.9 ABINIT—Ti-256—Speedups of IPGO, ASSIST LCT, specialized with ASSIST, specialized
and tiled with ASSIST compared to the original version

bandwidth usage of the critical loop nest. Despite the complexity of the original
function, ASSIST would make it easy to apply the same transformations to other
possible use cases of the function for other test cases of the ABINIT code.

6 Related Work

The originality of the approach presented in this paper lies in the combination of
both source-to-source transformations using annotations and FDO approaches. More
precisely feedback data drives source-to-source transformations to achieve both pro-
ductivity and performance.

Orio [19] is the closest tool and approach to ASSIST. We share the same goals,
namely improving productivity and performance using annotations at source level as
well as being able to handle architecture-specific/independent code optimizations.
However, they use empirical performance tuning to achieve better performance. This
implies generating multiple variants and evaluating their cost. Our approach opts for
a cheaper and more straightforward path using FDO. Our approach encompasses
static and dynamic analyses. This means that we can assess the quality of the code
generated by the compiler (using MAQAO CQA [29]) and get execution behavior
metrics. CHIiLL [12] is a framework that provides loop level transformations and also
uses empirical optimizations. It targets compilers and not regular developers. Xevtgen
[31] goes a step further when considering source-to-source transformations. It allows
application developers to define their own transformations using a dummy Fortran
syntax coupled with directives. From our own experience in helping developers
optimize their code, we can claim it is dangerous to assume they will be willing to
invest time and ressourses to write their own transformations, even if the interface
is based on a well-known language such as Fortran. For this particular reason, we
have tried to provide as many predefined transformations as possible. Also, plenty
of Domain Specific Languages or frameworks are available for performing source-

54 Y. Lebras et al.

to-source transformations, i.e: [10, 13, 27, 33, 36]. Some also implement parallel
transformations [1, 6, 21, 25, 26, 32].

For FDO, the related work analysis is straightforward: there are very few tools
and the main goal is to achieve performance. From what we encountered during our
research, the only available tools implementing FDO are compilers, with PGO (e.g.
Intel, GCC, LLVM), and AutoFDO (e.g. Intel [20], GCC [18] and LLVM) modes.
AutoFDO [9] is also the name of an in-house FDO deployment system proprietary
to Google. Compared to PGO, AutoFDO exploits hardware counter profiles. In both
cases feedback/profile data are injected early in the intermediate representation of
the compiler so that all the optimization passes can take advantage of them. Our
approach aims to help modern compilers by not injecting data using a specific format,
but rather at source level. From a performance point of view, both approaches are
complementary. During our work, we also came across Aestimo [2], an FDO research
evaluation tool that can be coupled with the Open Research Compiler [34]. However
it does not pursue the same goals.

7 Conclusion and Future Work

ASSIST is an open source tool that was developed with the aim of providing assis-
tance to application programmers in order to achieve better productivity and code
performance. We have shown the effectiveness of our approach when dealing with
industrial applications by using either static and dynamic feedback data, or user
guidance.

The tool presented in this article provides the foundation for an autotuning tool.
As future work we plan to harness all the available dynamic analyses existing in
MAQADO including those using hardware counters to perform and automate more
optimizations.

Acknowledgements We would like to thank Gabriel Staffelbach (CERFACS) for providing our
laboratory with the AVBP application, as well as Ghislain Lartigue and Vincent Moureau (CORIA)
for providing us with YALES2. This work has been carried out by the Li-PaRAD laboratory, PeXL
and the Exascale Computing Research laboratory, with the support of CEA, Intel, UVSQ. Intel
granted us dedicted access to a Skylake SP machine on which the experiments were run. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the CEA, Intel, or UVSQ.

References

1. Advisor. https://software.intel.com/en-us/intel-advisor-xe
2. Amaral, J.N., Berube, P.: Aestimo: a Feedback-Directed Optimization Evaluation Tool. IEEE,
Piscataway, NJ, USA (2006)

https://software.intel.com/en-us/intel-advisor-xe

ASSIST: An FDO Source-to-Source Transformation Tool for HPC Applications 55

3.

10.

12.

13.

14.

15.

16.
17.

18.
19.

20.
21.

22.

23.
24.

25.

Barthou, D., Rubial, A.C., Jalby, W., Koliai, S., Valensi, C.: Performance tuning of x86 openmp
codes with maqao. In: Parallel Tools Workshop, pp. 95-113. Desden, Germany, September
2009. Springer

. Bendifallah, Z., Jalby, W., Noudohouenou, J., Oseret, E., Palomares, V., Rubial, A.C.: PAMDA:

performance assessment using MAQAO toolset and differential analysis, pp. 107-127. Springer
International Publishing, Cham (2014)

. Bodin, F, Dolbeau, R., Bihan, S.: Hmpp: a hybrid multi-core parallel programming environ-

ment. In: Workshop on General Purpose Processing on Graphics Processing Units (GPGPU
2007), vol. 28 (2007)

. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical automatic polyhedral

parallelizer and locality optimizer. In: ACM SIGPLAN Notices, pp. 101-113. ACM (2008)

. Charif Rubial, A.S., Lereste, J.-B.: https://www.maqao.org/release/MAQAO.Tutorial. LProf.

v1.pdf

. Charif-Rubial, A.S., Barthou, D., Valensi, C., Shende, S., Malony, A., Jalby, W.: Mil: a lan-

guage to build program analysis tools through static binary instrumentation. In: 20th Annual
International Conference on High Performance Computing, pp. 206-215, Dec 2013

. Chen, D., Xinliang Li, D., Moseley, T.: Autofdo: automatic feedback-directed optimization for

warehouse-scale applications. In: Proceedings of the 2016 International Symposium on Code
Generation and Optimization, CGO 2016, pp. 12-23. ACM, New York, NY, USA (2016)
Chris Lattner et Vikram Adve. Dms/spl reg: program transformations for practical scalable soft-
ware evolution. In: Proceedings of the 26th International Conference on Software Engineering,
ICSE 2004, pp. 625-634. IEEE (2004)

. Chris Lattner et Vikram Adve. LIvm a compilation framework for lifelong program analysis

and transformation. In: Proceedings of the International Symposium on Code Generation and
Optimization: Feedback-Directed and Runtime Optimization, p. 75. IEEE Computer (2004)
Chun Chen, J.C., Hall, M.: Chill: a framework for composing high-level loop transformations,
June 2008

Cordy, J.R.: Source transformation, analysis and generation in txl. In: Proceedings of the 2006
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipula-
tion, PEPM 2006, pp. 1-11. ACM, New York, NY, USA (2006)

Coria. http://www.coria-cfd.fr/index.php/ YALES2

Dave et al.: Cetus: a source-to-source compiler infrastructure for multicores. Computer, 36—
42, December 2009

flang. https://github.com/llvm-flang/flang

Gonze, X. et al.: Abinit: first-principles approach to material and nanosystem properties. Com-
put. Phys. Commun., 2582-2615. Elsevier (2009)

Google. https://github.com/google/autofdo

Hartono, A., Norris, B., Sadayappan, P.: Annotation-based empirical performance tuning using
orio. In: 2009 IEEE International Symposium on Parallel Distributed Processing, pp. 1-11, May
2009

Intel. https://github.com/google/autofdo

Irigoin et al: Interprocedural analyses forprogramming environments. In: Workshop on Eviron-
ments and Tools For Parallel Scientifc Computing, Saint-Hilaire du Touvier, France, August
1992

Koliai, S., Bendifallah, Z., Tribalat, M., Valensi, C., Acquaviva, J.-T., Jalby, W.: Quantifying
performance bottleneck cost through differential analysis. In: Proceedings of the 27th Inter-
national ACM Conference on International Conference on Supercomputing, ICS 2013, pp.
263-272. ACM, New York, NY, USA, (2013)

MAQAO toolsuite. http://www.maqao.org

Novillo, D.: Samplepgo: the power of profile guided optimizations without the usability burden.
In: Proceedings of the 2014 LLVM Compiler Infrastructure in HPC, LLVM-HPC 2014, pp.
22-28. IEEE Press, Piscataway, NJ, USA (2014)

Palkowski, M., Bielecki, W.: TRACO Parallelizing Compiler, pp. 409—421. Springer Interna-
tional Publishing, Cham (2015)

https://www.maqao.org/release/MAQAO.Tutorial.LProf.v1.pdf
https://www.maqao.org/release/MAQAO.Tutorial.LProf.v1.pdf
http://www.coria-cfd.fr/index.php/YALES2
https://github.com/llvm-flang/flang
https://github.com/google/autofdo
https://github.com/google/autofdo
http://www.maqao.org

56

26.
217.

28.

29.

30.

31.

32.

33.

34.

3s.

36.

Y. Lebras et al.

Paraformance. http://paraformance.weebly.com/

Paul Klint, J.V., van der Storm, T.: Rascal a domain specific language for source code analysis
ad manipulation. In: IEEE International Working Conference on Source Code Analysis and
Manipulation, pp. 168—177. IEEE Computer Society (2009)

Quinlan et al.: Rose: compiler support for object-oriented framework. In: Parallel Process-
ing Letters, pp. 215—226. Lawrence Livermore National Laboratory, Livermore, CA, USA,
October 2000. World Scientific

Rubial, A.C., Oseret, E., Noudohouenou, J., Jalby, W., Lartigue, G.: CQA: a code quality
analyzer tool at binary level. In: HiPC, pp. 1-10. IEEE Computer Society (2014)

Rudgyard, M., Schonfeld, T.: Steady and unsteady flow simulationsusing the hybrid flow solver
avbp. ATIAA J., 1378-1385. ATIAA ARC (1999)

Takizawa, H., Suda, R., Hirasawa, S.: Xevtgen: fortran code transformer generator for high
performance scienti ¢ codes. Int. J. Network. Comput., 263—289 (2016)

Verdoolaege, S., et al.: Polyhedral parallel code generation for cuda. ACM Trans. Architec.
Code Optim. ACM, January 2013

Vermaas, R., Bravenboer, M., Kalleberg, K.T., Visser, E.: Stratego/xt 0.17. a language and
toolset for program transformation. In: Science of Computer Programming. Elsevier, May
2008

Wu, C., Lian, R., Zhang, J., Ju, R., Chan, S., Liu, L., Feng, X., Zhang, Z.: An Overview of the
Open Research Compiler, pp. 17-31. Springer, Berlin Heidelberg, Berlin, Heidelberg (2005)
Xiao, X., Hirasawa, S., Takizawa, H., Kobayashi, H.: An approach to customization of com-
piler directives for application-specific code transformations. In: 2014 IEEE 8th International
Symposium on Embedded Multicore/Manycore SoCs, pp. 99-106, Sept 2014

Yi, Q.: Poet: a scripting language for applying parameterized source-to-source program trans-
formations. In: Software Practice And Experience, pp. 675-706. University of Texas at San
Antonio, USA, May 2012. John Wiley and Sons

http://paraformance.weebly.com/

Unifying the Analysis of Performance)
Event Streams at the Consumer Interface o
Level

Jean-Baptiste Besnard, Allen D. Malony, Sameer Shende, Marc Pérache,
Patrick Carribault and Julien Jaeger

Abstract Several instrumentation interfaces have been developed for parallel pro-
grams to make observable actions that take place during execution and to make
accessible information about the program’s behavior and performance. Following in
the footsteps of the successful profiling interface for MPI (PMPI), new rich inter-
faces to expose internal operation of MPI (MPI-T) and OpenMP (OMPT) runtimes
are now in the standards. Taking advantage of these interfaces requires tools to
selectively collect events from multiples interfaces by various techniques: function
interposition (PMPI), value read (MPI-T), and callbacks (OMPT). In this paper, we
present the unified instrumentation pipeline proposed by the MALP infrastructure
that can be used to forward a variety of fine-grained events from multiple interfaces
online to multi-threaded analysis processes implemented orthogonally with plugins.
In essence, our contribution complements “front-end” instrumentation mechanisms
by a generic “back-end” event consumption interface that allows “consumer” call-
backs to generate performance measurements in various formats for analysis and
transport. With such support, online and post-mortem cases become similar from

J.-B. Besnard (<)

ParaTools SAS, Arpajon, France
e-mail: jbbesnard @paratools.fr
A.D. Malony - S. Shende

ParaTools Inc., Eugene, USA
e-mail: malony @paratools.com

S. Shende
e-mail: sameer @paratools.com
M. Pérache - P. Carribault - J. Jaeger

CEA, Arpajon, France
e-mail: marc.perache @cea.fr

P. Carribault
e-mail: patrick.carribaul @cea.fr

J. Jaeger
e-mail: julien.jaeger @cea.fr

© Springer Nature Switzerland AG 2019 57
C. Niethammer et al. (eds.), Tools for High Performance Computing 2017,
https://doi.org/10.1007/978-3-030-11987-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11987-4_4&domain=pdf
mailto:jbbesnard@paratools.fr
mailto:malony@paratools.com
mailto:sameer@paratools.com
mailto:marc.perache@cea.fr
mailto:patrick.carribaul@cea.fr
mailto:julien.jaeger@cea.fr
https://doi.org/10.1007/978-3-030-11987-4_4

58 J.-B. Besnard et al.

an analysis point of view, making it possible to build more unified and consistent
analysis frameworks. The paper describes the approach and demonstrates its benefits
with several use cases.

1 Introduction

There has always been an intimate pas de trois between the need for greater compu-
tational power in scientific discovery, the evolution of HPC hardware and software
to provide next-generation computing potential, and the nature of parallel perfor-
mance on HPC platforms that determines what can be achieved. By now, the dance
is well-known. New domain applications try to maximize parallelism and handle
larger problems, pushing beyond the limits of present high-performance computing
(HPC) capabilities. In response, HPC architectures and technology advance, resulting
in greater programming complexity in order to access the potential these new HPC
machines have to offer. However, the performance complexity is also in flux. For
instance, a parallel application might be able to expose a high level of concurrency
for a large number of threads to execute on a many-core processor. The problem is
that the optimal number of threads to use and even cores to allocate at any point in
the program depends on the performance interactions involved. The interplay of the
application and the HPC resources with respect to performance factors is subtle and
not easily understood. Performance consequences include:

e adecreasing memory per thread jeopardizes a pure distributed memory model due
to both the memory replication (halo cells) and communication overhead [4];

e smaller cores result in lower sequential performance, requiring the programs to
exhibit more parallelism to achieve the same performance;

e larger vectorial units requiring optimizing compilers and a correct expression of
computing loops (making them vectorizable), possibly new optimized instructions;
and

e complex memory hierarchies demanding a careful data-placement and tracking
(first-touch), including important NUMA effects, stacked memory, deep cache
architectures and meshed processors.

A strategy in response to these complexity challenges has been to advance parallel
programming languages to expose sufficient parallelism that can be mapped to mul-
tiple shared-memory cores via multi-threading and to distributed nodes via message
passing. Unified programming abstractions and hybrid ones are commonly explored.
The hybrid approach has been the most widely adopted due to the progressive shift
it allows from a pure MPI program to an MPI + X one. In general, X is some form
of shared-memory parallelism, such as provided by OpenMP directives for paral-
lelizing loops or expressing tasks. The standardization and portability of MPI and
OpenMP, plus the large corpus of multi-million line programs, makes it a desirable
combination. In general, hybrid parallel programming methodologies attempt to deal

Unifying the Analysis of Performance Event Streams at the Consumer Interface Level 59

with the important problem of application engineering in the face of rapid hardware
evolutions. The hope is to minimize the impact on the code which is costly to develop
and often represents a multi-year investment spanning over machine generations.

However attractive this strategy is, it is incomplete because performance aspects
are not fully considered. Beyond providing a means to enable instrumentation, most
parallel programming systems do not provide direct support for performance analy-
sis or optimization. Certainly, parallel performance tools exist, but there is a strong
motivation to make sure performance technology can interoperate effectively. Inter-
estingly, the rise of hardware targeted to HPC will make this more of a challenge.
Dedicated ARM processors in Japan and the Sunway processors [10] in China
increase the number of architectures tools will need to support. Similarly, custom
high-performance networks such as the Tofu interconnect [2] in Japan and the Bull
Exascale Interconnect [7] in France add communication performance factors specific
to those platforms. Infrastructure and power monitoring with the Bull power-tracking
FPGA results in additional components needing to be integrated. All these evolutions
will need (often already lack) suitable tools to both allow and assess them. Yet, the
shift to such systems will likely require a substantial porting effort, which will be
further complicated by the dearth of performance tools.

The purpose of this paper is to look at the problem of tool interoperability and pro-
pose an interface that could be leveraged more efficiently to address certain complex-
ity challenges of HPC hardware and software evolution. In particular, we consider
tools with complementary instrumentation mechanisms and pose the open question
of how to couple their data streams for measurement and downstream processing.
Indeed, several leading performance tool systems have instrumentation chains that
are redundant, while their actual value comes from the analysis insight they provide.
Thus, we propose a component-based view of the instrumentation chain by defin-
ing a coupling at the consumer-level interface instead of at the transport-level, as is
commonly done.

To support this idea, the rest of the paper is organized as follows. Section 2 first
describes our component-based instrumentation chain and how it is articulated. The
feasibility, extensibility, and a possible implementation of our proposed common
consumer interface is discussed in Sect. 3. Section4 illustrates an instance previous
ideas in the context of the Multi-Application Online Profiling tool (MALP). Con-
cluding remarks and future directions are then given.

2 Components in the Instrumentation Chain

The typical parallel program instrumentation chain focuses on “observation” points
and the mechanisms to make these visible, versus potential “coupling” opportuni-
ties for interoperability. Our goal is to determine where coupling interfaces could
be enabled exist and how to support them. To do so, we will first have to describe
a general model of the instrumentation chain and then consider each of its compo-
nents. With this groundwork, we propose a consumer-level interface and discuss its
prototype implementation.

60 J.-B. Besnard et al.

2.1 General Model

The instrumentation chain is a general term describing all the steps needed by a
tool to obtain and forward a target program state to intelligible analysis consumers,
thereby providing the end-user with a clear view of what is the actual behavior of its
program. This model applies for debugging, validation, and performance assessment
with only little variations.

Figure 1 shows the major components in the instrumentation chain that are used
to build tools. From left to right, we first have the event-source where the event is
generated, for example, by a function called or being called. Second, the data asso-
ciated with what was observed at the source is structured as an event represented by
different fields encoding observable parameters. In the middle of the figure, these
events are transported to the analysis. This process can take several forms and pos-
sibly converts the event to an intermediate representation suitable for the transport
layer. Then, on the analysis side, the transported event is first decoded to a state
similar to the original event representation. Eventually, events are projected to the
final analysis before being presented to the end-user.

The instrumentation chain shown in Fig. 1 is the way support tools explore paral-
lel program state, systematically intercepting, encoding, forwarding, decoding, and
eventually projecting what happened in the program. Events by nature are impercep-
tible, thus requiring this chain to be actualized for analysis. Also, note that we do
not see this chain as exclusively feed-forward. It is also possible for the end-user to
consume events from the event source in a “pull” model. In this case, for example,
when considering a debugger, the analysis is directly consuming events through the
ptrace transport layer.

Let us further describe the components that we have just introduced in more detail.
This gives us the opportunity to also point to the rich related work implementing these
various building blocks.

2.2 Event Sources

The event source is where the observable is generated. In all cases, the goal is to extract
information from program’s state, but this may happen in many different forms.
There are several possibilities when it comes to instrumenting a parallel program
[23], which we attempt to sort in categories before discussing them more generally.
Expert tool developers are quite familiar with these methods.

Intermediate Event Intermediate .
REDmsentaﬁon Represematicn

Fig. 1 Macroscopic view of instrumentation chain building blocks

Unifying the Analysis of Performance Event Streams at the Consumer Interface Level 61

e Manual instrumentation is the process of manually adding probes in the target
program. It can be, for example, tools call outlining phases, perhaps using printf
to output arbitrary values. Moreover, the user may expose an interface to make
visible the state of its program.

e Source-to-source instrumentation consists of parsing the source code in order
to insert probes and writing out the instrumented code in a source form to be
compiled. This was the case for the Opari instrumenter [20] before the advent of
the OMPT [8] interface. Included in this category are preprocessors that define
redirecting calls to instrumented libraries.

e Compiler instrumentation can be used to instrument functions using direc-
tives such as -finstrument-functions. Moreover, pragmas or functions
attributes can be used to create weak symbols to be used at link or load time,
as done for example in the MPI profiling interface. An instrumented program is
produced as the result of the compilation process.

e Linker and loader mechanism can be used to alter symbol resolution either by
changing library order at link time, wrapping symbols (using -W1, -wrap) or by
inserting at runtime (with LD_PRELOAD) a library superseding existing ones. At
this level, weak symbols can also be replaced by instrumented functions.

e Runtime tools can provide verbose information source for tools. The MPI tools
interface with MPI-T [16], the OpenMP tools and debugging interface (OMPT and
OMPD) and the CUDA profiling interface (CUPTI) [19] are examples of facilities
provided by the runtime to enable tool support.

e Indirect measurements in this last category we consider measurements which
deal with system-wide parameters such as memory, network bandwidth, system
load. This approach can also be extended to interpreted languages. Similarly, when
considering virtualized environments or embedded hardware such interface could
be exposed through a serial port (either virtual and physical).

The above non-exhaustive list illustrates the number of inputs an instrumentation
chain may have to gather. Given the different interfaces offered by the various sources,
transposing the “state” of an application to a unified form becomes a challenge. To
do so it has to encode what it “sees” through these varying sources in a common
intermediate representation.

2.3 Intermediate Representations

A tool interested in the various event sources has to ultimately forward data to the
analysis consumers. Intuitively, it must convert from the source to what we describe
below as an intermediate representation. Note that such representation is far from
being fixed. Some approaches could adopt actual events, carefully describing what
is observed. Other approaches may simply call functions encoding program state as
parameters operating the conversion from the source to the transport layer (see next
section) immediately in the instrumentation code. Eventually, such representation

62 J.-B. Besnard et al.

could be even useless in the case of a direct data consumption—directly feeding the
analysis at wrapper level.

We propose to develop the intermediate representation idea that can serve to create
acommon intermediate layer between tools components. As we just evoked, we have
seen that events can be either partially or even completely diluted in function of the
instrumentation chain construction. However, by preserving the “event” abstraction,
itis possible to enable interesting scenarios that are not yet fully exploited. Eventually,
the reader should notice that this representation is present in two phases of the
instrumentation chain (see Fig. 1), both before and after the transport layer.

2.4 Event Forwarding

Given events extracted and then encoded in an intermediate representation, we con-
sider how his representation is transposed to where it should be processed. At this
step, there are also various approaches which depend on data verbosity and analysis
cost. It is also here where the most impact on tool’s scalability arises, clearly of high
importance for tool designers. Consider the following transport layers:

e In-place instrumentation is when the analysis is directly done at the event-
source level. In this case, the analysis is generally not distributed and must remain
lightweight so as not to impact the target program.

e Post-mortem instrumentation consists in storing events in a trace (generally in
the file-system) for later analysis. The advantage of this approach is that analysis
is completely decoupled from the target program and that data can be processed
multiple times, for example, to be compared. However, the cost associated with
storing events has to be mitigated requiring a careful design of a storage medium
commonly called a trace-format. Note that this format is generally different from
the intermediate representation mentioned in Sect.2.3.

e Online instrumentation is a compromise between the two previous approaches.
It relies on network resources to pass events to third-party processes in charge of
performing the analysis. This can be done over a Tree-Based Overlay Network
(TBON) to perform, for example, validation or continuous spatial reduction at
runtime. Another model consists of forwarding events from the group of instru-
mented processed directly to the analysis—a model that we explore later in this
paper in the context of the MALP [5] performance tool.

The purpose of the transport layer is to forward events to the analyzer. In our
instrumentation chain model, it can be seen as a function taking events (at the inter-
mediate representation level) and encoding them in a suitable format. On the analysis
side, the event is decoded to the intermediate representation for processing. Note, the
trace formats also have to account for meta-data (e.g., active threads, their location,
their identifiers, and so on). Once forwarded, data are to be projected to the final
analysis.

Unifying the Analysis of Performance Event Streams at the Consumer Interface Level 63

2.5 Event Analysis

There are as many types of event projection than performance tools. Indeed, it is
generally at this step that tools produce views, analysis, and hopefully insights for
the end-user. Naturally, some views require more input-data than others. However, as
analysis are derived from the same input-set of source-event, it is possible to consider
that any analysis presented with a sufficiently verbose input should be able to produce
its output. In other words, the difference between a time-line and a profile is the level
of data projection operated (and therefore its partial destruction). In practice, a given
analysis is generally tied to a single instrumentation layer. This might be one reason
that we see less attention to interoperability. One interest is to explore whether it
is possible to decouple these two main components of the instrumentation chain,
enabling cross-analysis.

2.6 Tools Interoperability

We have seen that despite variability in both methods and implementations, instru-
mentation chains exhibit a common architecture. Moreover, as instrumentation
sources are a finite set and generally similar between performance tools, we believe it
isreasonable to pose the question of tools interoperability. Some tools are already con-
nected and able to share the same instrumentation layer, such as provided by Score-P
[18]. Howeyver, this interoperability is still at the transport layer level—Score-P sup-
ports several output formats for profiling (TAU [23], Scalasca [12]) and OTF2 [9]
for tracing, as well as exposing an online consumption interface for Periscope [3].

Moreover, there are several trace-format converters that can pass data between
tools. This process generally involves rewriting all events to the target’s transport
layer representation (i.e., trace format). This approach has the drawback of duplicat-
ing performance data, while being relatively expensive due to their potentially large
trace sizes. The following sections explore an alternative approach by exploiting the
intermediate representation itself.

3 Towards a Shared-Representation of Performance Events

As presented in Fig. 1, there are two steps where events are in an intermediate
representation. During these steps, events are being either extracted or inserted from
and to another interface. This representation does not suffer from the same constraints
than the transport one. Indeed, these state events are mostly on the stack as structures
or function parameters. Also, this representation does not have to be highly space
efficient as it will be used for a very short period of time unlike, for example, a
post-mortem trace event. An interesting question is whether we can use this to the
benefit of unifying represetations.

64 J.-B. Besnard et al.

3.1 Towards a Tool Network

Consider instrumentation chains where this representation is unified. To do so,
we suppose a shared intermediate in-memory representation sufficiently generic to
describe any event type with retro-compatibility. This in-memory aspect is important
as it mitigates approach drawbacks. Indeed, if, for instance, we consider the highly
generic Pajé [17] trace format, it required ASCII encoding, making it inefficient in
terms of storage and parsing.

What we attempt to describe here is close to the consumer/producer interface of
any trace format. It can be illustrated with the EARL high-level trace consuming
interface proposed in the KOJAK instrumentation chain [25], more recently the
notion of Event-Action mapping [15] or ScrubJay [13] (internally relying on Caliper
[6]). One point of interest in this related work is the exploration of an event meta-
model. Interestingly, in order to make this unified approach possible tools would
have to agree on what source events actually represent. If such in-memory event
model could be achieved, we could provide trace formats with the same interface.
Symmetrically, we could allow instrumentation blocks to produce events in this
format.

We propose to model each building block of the instrumentation chain as graph
components with inputs and outputs respectively matching these consumer and pro-
ducer interfaces. As illustrated in Fig. 2, this model would turn support tools into a
network of collaborating applications, allowing them to be interfaced at the consumer
interface level. The following discusses what could be the design of such interface
and what are the main constraints envisioned. The approach that we will correlate
with our existing implementation of the MALP performance tools which exhibits
some of these abstractions.

As presented in Fig. 3, the component model supports all the configurations
described in Sect. 2.4. Thus, at first cut, this model fits most performance tools
indifferently from their data-management policy.

Moreover, as shown in Fig. 4, enabling these common interfaces would allow
straightforward interoperability. It would indeed be easy to convert to and from a

Consumer Interface

v

Intermediate Representation
$ $ $ Consumer Interface . X X
- £ =

Intermediate Representation

Intermediate Representation Intermediate Representation
\/ L2020 20N v
Producer Interface Vamoir Cube HPCToolkt ... Producer Interface
(a) Instrumentation block (b) Analysis block (¢) Transport block

Fig. 2 Schematic illustration of instrumentation chain building blocks considering the unified
producer/consumer model

Unifying the Analysis of Performance Event Streams at the Consumer Interface Level 65

H v C i . C n P C Fljrll.ﬁirrj P C

(a) Post-mortem mode (b) Online offloading mode
M c «— Pmc\ D v O

- GED v GRS
. (O

(c) Tree-Based Overlay Network (TBON) mode

Fig. 3 Instrumentation chain configurations obtained from combining building blocks at the
consumer level interface. “P” and “C” respectively stand for producer and consumer interfaces

(a) Example of a trace generator (b) Implementation of a trace converter

Fig. 4 Alternative building-block usage for interoperability. “P” and “C” respectively stand for

producer and consumer interfaces
M P

Fig. 5 Custom performance
analysis work-flow build
around the notion of unified
consumer/producer interface.
“P” and “C” respectively
stand for producer and
consumer interfaces

trace-format (Fig. 4), to generate a trace (Fig. 4), or simply to read a trace agnostically
from its internal format.

Figure 5 illustrates the level of modularity which could be attained thanks to
common interfaces. In this examples, all events are extracted from the source pro-
grams using an online coupling (forwarding) mechanism. Then the tool branches,
first feeding a selective branch (see filter func) sent to the post-mortem trace. Mean-
while, all events are sent to a profile analysis which is less costly to implement and
therefore able to handle all events without filtering. Moreover, note how the same
trace could be read by different tools. Thanks to this feature users would be able

66 J.-B. Besnard et al.

to see the exact same events instead of having to rerun the instrumented programs
will all the bias it supposes (instrumentation overhead). In such configuration, tools
could be used in a complementary manner leveraging their various capabilities on
the same event records—saving repetitive steps when dealing with monolithic instru-
mentation chains. This would generalize what is already possible around the Score-P
infrastructure.

3.2 The Producer/Consumer Interface

There are certain aspects of a unified interface that outline and motivate important
design choices. First, if different tools choose to implement their own instrumentation
chain, it is often because they intend to explore new kinds of source events and
consequently cannot immediately use what is presently existing. However, with the
rise of rich instrumentation interfaces (e.g., OMPT and MPI-T) and considering by
itself the non-trivial task of instrumenting a parallel program, important efforts have
to be directed to this relatively redundant work. The aim is to convert source events
to a representation matching the analysis. instrumenting at event source from known
interfaces and with common approaches (see Sect. 2.2). The interface, therefore, has
to propose a highly-extensible event-model, both retro-compatible and future-proof.
For example, if a new instrumentation interface rises, it should be possible to account
for it without impacting tools. This first observation immediately forbids the use of
the per-event function (as in OTF2), advocating instead for a single function taking
an event-object as parameter. In this way, the consumer/producer interface can be
fixed and this object later extended to match new requirements.

If we now consider this object representation in the context of a common language
such a C, it will certainly be a struct pointer passed as a parameter through the
interface. However, this struct should be able to represent an arbitrary number of
events, each with their respective fields carrying metrics. In C, the union can be
used to represent multiple data-layouts in the same object, this layout is chosen
through the member name. As a consequence, it should be possible to determine
the event “kind” which cannot be stored directly inside the union. Furthermore, any
event occurring in a parallel application must be associated with meta-data, such as
the thread ID where the event was triggered, the timestamp, the MPI rank, and so
on. Like the event type, a “common” set of data has to be exposed for every event.

Figure 6 shows how a representation would allow multiple types to be encoded
in the same struct without the constraint of the number of types supported thanks to
the enum. However, the size of the C struct would be the header size plus the size of
the largest enum member. Consequently, some “simple” events may have a footprint
larger than they are. This would be a problem in the case of a trace format where
storage size is crucial. This extra event footprint is then acceptable in comparison of
the flexibility it provides when dealing solely with in-memory representations.

One aspect worthy of further consideration is meta-data. As shown in Fig. 6,
events are contextualized to be associated with ranks and threads. However, the

Unifying the Analysis of Performance Event Streams at the Consumer Interface Level 67

Fig. 6 Proposed data-model [HeaderName | The common event header |
for an unified intermediate -
t representation timestamp ‘When the event happened
ceventrep tid Thread ID where the event happened
rank MPI rank where the event happened
type Event-type encoding how to look at the enum
[Payloadname | An union encoding several types of events |
[Collective Operation | Collective Operation Description |
colltype Collective operation type
root Root rank of the collective
srcbuff Source buffer
[P2PMessage | Point to Point Message Description
p2ptype Point-to-point operation type
remoterank Remote MPI process rank
count Number of elements
comm Communicator

analyzer has to know of these threads and ranks and therefore must be informed of
their existence. Most tools manage shadow contexts tracking all these identifiers to
later retrieve representative state. Instead of this manually tracked state, the source
events may simply emit an event for each new handle encountered (e.g., datatype,
communicator, and so on). Thanks to logical event order for a given execution stream,
the analyzer should be able to reestablish its shadow state based on the forwarded
event, just as the dedicated instrumentation library would do when intercepting the
events. This naturally outlines the need for dedicated meta-data forwarding events for
new execution streams and handles and more specifically a common agreement on
their semantics. This is probably the most difficult part in the design of a converging
performance event meta-model as unlike for source-events, tools are free to choose
an arbitrary state tracking approach.

Eventually, if we look at Fig. 5, the producer/consumer interface should be able
to build a directed acyclic graph of tools. Producer interfaces should be exposed by
name, allowing multiple tools (running in shared memory) to register and consume
events. In particular, events should be repeated in each tool registered to the interface,
for example, to both profile and trace in Fig. 5. Additionally, the producer interface
should callback inside the consumer, as it simplifies data-parallelism which otherwise
has to be manually implemented in the consumer. On this note, the single callback
approach is very important to avoid the need to register several callbacks with a
varying footprint to process events as in current OTF2 API. This idea is not new
and has been explored in P*MPI [22]. It has also been pursued in the generic tools
interface (GTI) [14] and its transposition to tracing GTI-OTFX [24], together with
TBON support. These related research efforts are examples of such modular and
plugin-oriented infrastructures which adopt approaches close to the one we want to

68 J.-B. Besnard et al.

motivate in this work. They clearly demonstrate the validity and interest of loading
multiple components around an instrumented program. In fact, we see correlations
in what is done in the GTI for validation/trace-analysis and MALP for profiling.

4 Practical Illustration with MALP

The Multi-Application Online Profiling (MALP) performance tool [5] has been
designed around the concept of a Generic Events interface, matching the model
we presented in Fig. 6. Our idea when we started the development was to find an alter-
native to verbose performance traces without sacrificing event verbosity too early in
the instrumentation chain. In order to avoid I/O operations, we utilized an approach
inspired from the P*MPI [22] virtualization idea and forwarded a stream of events
from the instrumented processes to the analysis. These events are similar to those
you may find in a performance trace and rely on an intermediate representation.
On the analysis side, a “blackboard” system allows plugins to register themselves
to event types in order to perform data-reduction on incoming events. Eventually,
reduced data are exported in a JSON file and presented in an HTML interface. In
this description, one can see how MALP fits in the ideas we described in previous
sections.

As presented in Fig. 7, we recently added support for new event-source inter-
faces such as MPI-T, Alinea MAP time-series, OTF2 trace format, and OMPT inside
MALP. All events are then represented as Generic Events and forwarded over
the network to be reduced inside analysis processes. Therefore, MALP is an illus-
tration of the feasibility of the approach we proposed in this paper. It suggests that if
we managed to find new inter-operability opportunities with existing tools we might
be able to create bridges simplifying end-user experience. For instance, imagine that
Score-P exposes a generic event interface. We would then be able to take advantage of

CAraACIrIEaEs

Generic Event

v

Generic Event

Fig. 7 Schematic overview of source-interfaces supported by the MALP performance tool

Unifying the Analysis of Performance Event Streams at the Consumer Interface Level 69

astate-of-the-art instrumentation substrate with arich eco-system (packages, support,
user-base), while enabling a robust connection to MALP for performance analysis.
From a research and development point of view, it would have saved a lot of complex-
ity in the tool implementation, saving redundant developments as instrumentation
approaches are generally similar and well-known (see Sect.2.2).

5 Conclusion

This paper proposes the concept of an intermediate event representation that that facil-
itates the development of performance tool workflows. Such workflows are based on
a general instrumentation chain model, with components ranging from the instrumen-
tation to the analysis. Our observation of transport-layer aspects of exemplar tools
(e.g., post-mortem, in-place, offload, TBON) is that their data semantics is more or
less invariant. Thus, we introduced the idea of modular instrumentation chains with
an intermediate representation as mediation layer. In Sect. 3.1, we discussed the ben-
efits that would arise from such data model, including new performance workflows
and possible component reuse. We then suggested a C implementation using a struct
of union and an unified handler interface, motivated by what we see as important
design choices. Eventually, we discussed the implementation done in the MALP
performance tools and showed how it related to our proposed model.

There is an interest in enabling tool inter-operability to simplify tools develop-
ment and to provide more freedom to end-users who are currently forced to adopt the
instrumentation chain for particular analysis tools. Related works such as Score-P,
P"MPI, the GTI, and various trace-converters show that there is a path for collabora-
tion and modularity both inside and between tools. Our hope is that one day we will
be able to compose performance tools workflows from a variety of components—
TAU [23], Score-P, Paraver [21], HPCToolkit [1], Cube [11], MALP [5]. We believe
that performance tools are currently not very far from being capable of this, in fact, a
simple in-memory intermediate layer approaching the one we described in this paper
for MALP would be sufficient. In the line of callback oriented instrumentation layers
being developed for OpenMP and MPI, we are confident that infrastructures imple-
menting this semantic will naturally overcome monolithic instrumentation chains.

6 Future Work

The MPI-T and OMPT source-events and simple analysis were implemented in
MALP. A point which also needs attention is backtrace representation which requires
dedicated storage and possibly complex in-place analysis to attach a given call-stack
to events. We plan to explore the possibility of a unified space-efficient backtrace
abstraction fitting in our proposed intermediate representation.

70

J.-B. Besnard et al.

References

10.

11.

12.

13.

. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J., Tallent,

N.R.: Hpctoolkit: tools for performance analysis of optimized parallel programs. Concurr.
Comput. Pract. Exp. 22(6), 685-701 (2010). https://doi.org/10.1002/cpe.1553

Ajima, Y., Inoue, T., Hiramoto, S., Uno, S., Sumimoto, S., Miura, K., Shida, N., Kawashima,
T., Okamoto, T., Moriyama, O., Ikeda, Y., Tabata, T., Yoshikawa, T., Seki, K., Shimizu, T.: Tofu
Interconnect 2: System-on-Chip Integration of High-Performance Interconnect, pp. 498-507.
Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-07518-
1_35

. Benedict, S., Petkov, V., Gerndt, M.: PERISCOPE: An Online-Based Distributed Performance

Analysis Tool, pp. 1-16. Springer, Berlin Heidelberg (2010). https://doi.org/10.1007/978-3-
642-11261-4_1

Besnard, J.B., Malony, A., Shende, S., Pérache, M., Carribault, P., Jaeger, J.: An mpi halo-cell
implementation for zero-copy abstraction. In: Proceedings of the 22Nd European MPI Users’
Group Meeting, EuroMPI 2015, pp. 3:1-3:9. ACM, New York, NY, USA (2015). https://doi.
org/10.1145/2802658.2802669

Besnard, J.B., Pérache, M., Jalby, W.: Event streaming for online performance measurements
reduction. In: 2013 42nd International Conference on Parallel Processing, pp. 985-994 (2013).
https://doi.org/10.1109/I1CPP.2013.117

Bohme, D., Gamblin, T., Beckingsale, D., Bremer, P., Giménez, A., LeGendre, M.P., Pearce,
0., Schulz, M.: Caliper: performance introspection for HPC software stacks. In: Proceedings
of the International Conference for High Performance Computing, Networking, Storage and
Analysis, SC 2016, Salt Lake City, UT, USA, November 13-18, 2016, pp. 550-560 (2016).
https://doi.org/10.1109/SC.2016.46

Derradji, S., Palfer-Sollier, T., Panziera, J.P., Poudes, A., Atos, FW.: The bxi interconnect
architecture. In: 2015 IEEE 23rd Annual Symposium on High-Performance Interconnects, pp.
18-25 (2015). https://doi.org/10.1109/HOTIL.2015.15

Eichenberger, A.E., Mellor-Crummey, J., Schulz, M., Wong, M., Copty, N., Dietrich, R., Liu,
X., Loh, E., Lorenz, D.: OMPT: An OpenMP Tools Application Programming Interface for
Performance Analysis, pp. 171-185. Springer, Berlin, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40698-0_13

Eschweiler, D., Wagner, M., Geimer, M., Kniipfer, A., Nagel, W.E., Wolf, F.: Open trace format
2: the next generation of scalable trace formats and support libraries. PARCO 22, 481490
(2011)

Fu, H., Liao, J., Yang, J., Wang, L., Song, Z., Huang, X., Yang, C., Xue, W,, Liu, F, Qiao, F,,
Zhao, W., Yin, X., Hou, C., Zhang, C., Ge, W., Zhang, J., Wang, Y., Zhou, C., Yang, G.: The
sunway taihulight supercomputer: system and applications. Sci. China Inf. Sci. 59(7), 072,001
(2016). https://doi.org/10.1007/s11432-016-5588-7

Geimer, M., Kuhlmann, B., Pulatova, F., Wolf, F., Wylie, B.J.N.: Scalable collation and presen-
tation of call-path profile data with cube. In: Parallel Computing: Architectures, Algorithms
and Applications: Proceedings Parallel Computing (ParCo07, Jlich/Aachen, pp. 645-652. 10S
Press

Geimer, M., Wolf, F., Wylie, BJ.N., Abrahdm, E., Becker, D., Mohr, B.: The scalasca perfor-
mance toolset architecture. Concurr. Comput. Pract. Exp. 22(6), 702-719 (2010). https://doi.
org/10.1002/cpe.1556

Giménez, A., Gamblin, T., Bhatele, A., Wood, C., Shoga, K., Marathe, A., Bremer, P.T.,
Hamann, B., Schulz, M.: Scrubjay: deriving knowledge from the disarray of hpc performance
data. In: Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC 2017, pp. 35:1-35:12. ACM, New York, NY, USA (2017).
https://doi.org/10.1145/3126908.3126935

https://doi.org/10.1002/cpe.1553
https://doi.org/10.1007/978-3-319-07518-1_35
https://doi.org/10.1007/978-3-319-07518-1_35
https://doi.org/10.1007/978-3-642-11261-4_1
https://doi.org/10.1007/978-3-642-11261-4_1
https://doi.org/10.1145/2802658.2802669
https://doi.org/10.1145/2802658.2802669
https://doi.org/10.1109/ICPP.2013.117
https://doi.org/10.1109/SC.2016.46
https://doi.org/10.1109/HOTI.2015.15
https://doi.org/10.1007/978-3-642-40698-0_13
https://doi.org/10.1007/978-3-642-40698-0_13
https://doi.org/10.1007/s11432-016-5588-7
https://doi.org/10.1002/cpe.1556
https://doi.org/10.1002/cpe.1556
https://doi.org/10.1145/3126908.3126935

Unifying the Analysis of Performance Event Streams at the Consumer Interface Level 71

14. Hilbrich, T., Miiller, M.S., de Supinski, B.R., Schulz, M., Nagel, W.E.: Gti: a generic tools

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

infrastructure for event-based tools in parallel systems. In: 2012 IEEE 26th International Par-
allel and Distributed Processing Symposium, pp. 1364—1375 (2012). https://doi.org/10.1109/
IPDPS.2012.123

Hilbrich, T., Schulz, M., Brunst, H., Protze, J., de Supinski, B.R., Miiller, M.S.: Event-Action
Mappings for Parallel Tools Infrastructures, pp. 43—-54. Springer, Berlin, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48096-0_4

Islam, T., Mohror, K., Schulz, M.: Exploring the capabilities of the new MPI_T interface.
In: Proceedings of the 21st European MPI Users’ Group Meeting, EuroMPI/ASIA 2014, pp.
91:91-91:96. ACM, New York, NY, USA (2014). https://doi.org/10.1145/2642769.2642781
de Kergommeaux, J.C., de Oliveira Stein, B.: Pajé: An Extensible Environment for Visualiz-
ing Multi-threaded Programs Executions, pp. 133-140. Springer, Berlin, Heidelberg (2000).
https://doi.org/10.1007/3-540-44520-X_17

Kniipfer, A., Rossel, C., Mey, D.a., Biersdorff, S., Diethelm, K., Eschweiler, D., Geimer,
M., Gerndt, M., Lorenz, D., Malony, A., Nagel, W.E., Oleynik, Y., Philippen, P., Saviankou,
P., Schmidl, D., Shende, S., Tschiiter, R., Wagner, M., Wesarg, B., Wolf, F.: Score-P: A Joint
Performance Measurement Run-Time Infrastructure for Periscope,Scalasca, TAU, and Vampir,
pp. 79-91. Springer, Berlin Heidelberg (2012). https://doi.org/10.1007/978-3-642-31476-6_7

. Malony, A.D., Biersdorff, S., Shende, S., Jagode, H., Tomov, S., Juckeland, G., Dietrich, R.,

Poole, D., Lamb, C.: Parallel performance measurement of heterogeneous parallel systems with
gpus. In: 2011 International Conference on Parallel Processing, pp. 176—185 (2011). https:/
doi.org/10.1109/ICPP.2011.71

Mohr, B., Malony, A.D., Shende, S., Wolf, F,, et al.: Towards a performance tool interface for
openmp: an approach based on directive rewriting. In: Proceedings of the Third Workshop on
OpenMP (EWOMPOL1) (2001)

Pillet, V., Pillet, V., Labarta, J., Cortes, T., Cortes, T., Girona, S., Girona, S., Computadors,
D.D.D.: Paraver: a tool to visualize and analyze parallel code. Technical report, In WoTUG-18
(1995)

Schulz, M., de Supinski, B.R.: PNMPI tools: A whole lot greater than the sum of their parts. In:
Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, SC 2007, pp. 30:1-30:10.
ACM, New York, NY, USA (2007). https://doi.org/10.1145/1362622.1362663

Shende, S.S., Malony, A.D.: The tau parallel performance system. Int. J. High Perform. Comput.
Appl. 20(2), 287-311 (2006). https://doi.org/10.1177/10943420060644 82

Wagner, M., Hilbrich, T., Brunst, H.: Online performance analysis: an event-based workflow
design towards exascale. In: 2014 IEEE International Conference on High Performance Com-
puting and Communications, 2014 IEEE 6th International Symposium on Cyberspace Safety
and Security, 2014 IEEE 11th International Conference on Embedded Software and System
(HPCC,CSS,ICESS), pp. 839-846 (2014). https://doi.org/10.1109/HPCC.2014.145

Wolf, F., Mohr, B.: EARL—A Programmable and Extensible Toolkit for Analyzing Event
Traces of Message Passing Programs, pp. 503—512. Springer, Berlin, Heidelberg (1999). https://
doi.org/10.1007/BFb0100611

https://doi.org/10.1109/IPDPS.2012.123
https://doi.org/10.1109/IPDPS.2012.123
https://doi.org/10.1007/978-3-662-48096-0_4
https://doi.org/10.1145/2642769.2642781
https://doi.org/10.1007/3-540-44520-X_17
https://doi.org/10.1007/978-3-642-31476-6_7
https://doi.org/10.1109/ICPP.2011.71
https://doi.org/10.1109/ICPP.2011.71
https://doi.org/10.1145/1362622.1362663
https://doi.org/10.1177/1094342006064482
https://doi.org/10.1109/HPCC.2014.145
https://doi.org/10.1007/BFb0100611
https://doi.org/10.1007/BFb0100611

OMPT-Multiplex: Nesting of OMPT)
Tools e

Joachim Protze, Tim Cramer, Simon Convent and Matthias S. Miiller

1 Introduction

In version 5.0 the OpenMP specification [1] will define a tool interface (OMPT)
that allows monitoring tools to gain insights into implementation specific informa-
tion about the execution behavior of an OpenMP application. The OMPT interface
provides information about certain events during the execution, but also allows to
query the OpenMP runtime about state and stack frame information. The interface
is designed to enable the usage of a single OMPT tool. However, in order to enable a
modular tool design, it might be helpful to split a single tool into parts which poten-
tially need the same or distinct information from the OpenMP runtime. In other
situations, it is desired to apply multiple tools at the same time. For MPI applica-
tions, this motivated the development of P"MPI [2] which allows to use multiple
PMPI tools at the same time.

In this paper we propose a method which allows a standard-compliant cascading
of multiple OMPT tools.! The basic idea is that an OMPT tool can behave like the
OpenMP runtime and provides the entire OMPT interface for the next tool. At the
same time this paper describes the basic steps for creating a general OMPT tool.

TAn implementation is available at https:/git.rwth-aachen.de/OpenMPTools/OMPT-
Multiplex.

J. Protze () - T. Cramer - S. Convent - M. S. Miiller
RWTH Aachen University, IT Center, Seffenter Weg 23, 52074 Aachen, Germany
e-mail: protze @itc.rwth-aachen.de

T. Cramer
e-mail: cramer@itc.rwth-aachen.de

S. Convent
e-mail: convent@itc.rwth-aachen.de

M. S. Miiller
e-mail: mueller@itc.rwth-aachen.de

© Springer Nature Switzerland AG 2019 73
C. Niethammer et al. (eds.), Tools for High Performance Computing 2017,
https://doi.org/10.1007/978-3-030-11987-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11987-4_5&domain=pdf
https://git.rwth-aachen.de/OpenMPTools/OMPT-Multiplex
https://git.rwth-aachen.de/OpenMPTools/OMPT-Multiplex
mailto:protze@itc.rwth-aachen.de
mailto:cramer@itc.rwth-aachen.de
mailto:convent@itc.rwth-aachen.de
mailto:mueller@itc.rwth-aachen.de
https://doi.org/10.1007/978-3-030-11987-4_5

74 J. Protze et al.

2 Use Cases

In this section, we discuss two different use cases, which represent common scenarios
for using multiple OMPT tools at the same time. We conclude the section with an
overview about tools that already adopt the OMPT interface.

2.1 Affinity Display

One of the new features introduced by OpenMP 5.0 will be a standardized
way to report the affinity information by exporting the environment variable
OMP_DISPLAY AFFINITY. This enables the user to verify the intended affin-
ity setting at execution time in a standard-compliant manner. During the discussion
of this new feature, we already demonstrated that OMPT holds all necessary infor-
mation to provide the requested output [3]. An OpenMP runtime implementation
might use this OMPT based affinity display implementation to provide the specified
behavior. This approach means, that the OpenMP runtime would load the affinity
display tool instead of loading an OMPT tool following the work flow described
in Sect. 4. Furthermore, this would occupy the OMPT interface and no other tool
could be loaded at the same time. Working with tools has shown that they can break
expected behavior. So it is important to have the ability to display the affinity infor-
mation while a monitoring tool is active. Therefore, the affinity display tool needs
to preserve the ability of loading another tool when active. Since the affinity tool in
this scenario is directly loaded by the runtime skipping the OMPT tool initialization,
the affinity tool needs to perform the full OMPT tool initialization on behalf of the
OpenMP runtime.

2.2 Supplementary Debugging Tool

Besides OMPT, OpenMP 5.0 will also introduce a debugging interface (OMPD).
This interface enables a third-party tool, i.e., a tool running in a separate process—
potentially on a different machine—, to introspect and understand the state of the
OpenMP runtime without any knowledge about the meaning of internal variables and
structures. The defined OMPD library accepts high-level queries from the tool. The
OMPD library then answers these queries by interpreting the memory in the OpenMP
application. Since the OMPD library has the knowledge about the structure of the
OpenMP runtime encoded, this library is closely coupled with a specific OpenMP
runtime version.

If a debugger wants to provide additional state information that is not collected
and provided by the OpenMP runtime and the OMPD library, an OMPT-based sup-
plementary debugging tool can collect this information for the debugger. This infor-

OMPT-Multiplex: Nesting of OMPT Tools 75

mation can be related to task dependences, queued tasks, statistics about queued
tasks, or stack information from task creation. This supplementary OMPT tool is
closely paired with the debugging tool. This way, the debugging tool can understand
the data layout in the OMPT tool and extract the collected information. In this case,
the OMPD library supports the debugger in finding the right information by making
the OMPT data pointer for the selected OpenMP scope accessible.

However, since OMPT natively only supports a single OMPT tool, this would
prevent to use a monitoring tool while having the supplementary debugging tool in
place. Therefore, this tool should also allow another tool to be loaded.

2.3 Other Tools Building on OMPT

Although the specification of OMPT is not finalized yet, several tools already were
adapted to this new interface. Lorenz et al. [4] compare OPARI and OMPT in the
context of the Score-P measurement infrastructure. HPCToolkit [5] is another perfor-
mance analysis tool that took part in the co-design of OMPT and therefore adapted
to the OMPT interface.

In the context of the data race detection tool Archer, we evaluated the synchro-
nization information provided by OMPT [6]. Similar to the affinity tool, the OMPT
tool provided by Archer is another candidate for a tool that finally might be tightly
integrated into the compiler and gets automatically activated in the case that a special
compiler feature is active. This is only possible if the tool does not block the OMPT
interface.

3 OMPT Multiplex Architecture

In order to overcome the limitation of a single OMPT tool, we developed a multiplex
tool. This multiplex tool is provided as a header file, that can be compiled into
any OMPT tool. The header enables the including tool to load another OMPT tool.
Since the multiplexing tool is header-only, there is no separate library to load. In the
following we will refer the including tool as the own fool and the nested tool as the
client tool.

Figure 1 shows the basic steps and concepts of any OMPT tool:

1. Runtime initialization:

e The OpenMP runtime searches for an OMPT tool and calls
ompt_start_tool

o After the OpenMP runtime finished initialization, it allows the tool to initialize
by callingompt_initialize

76

Fig. 1 OMPT-Multiplex
Tool architecture: The
multiplex tool is built into
the own tool and loads a
client tool. A1l OMPT API
function calls are redirected

to the multiplex tool Register

callbacks

ompt_start_tool
ompt_initialize

2. Tool initialization:

OpenMP Program

J. Protze et al.

O

Querying further
runtime information

O

Callbacks on
OpenMP events

e A tool looks up OMPT functions with the lookup function provided as
argument of the ompt_initialize function
o Atool registers callbacks for OpenMP events using ompt_set_callback

3. Delivery of OpenMP events:

e The OpenMP runtime invokes tool callbacks during the execution of the pro-
gram whenever an event is encountered (e.g., entering/exiting parallel, target,
worksharing, or synchronization regions)

4. Querying further information from the OpenMP runtime:

e A tool might call OMPT functions to investigate the thread state or identify

OpenMP runtime frames

For the multiplex tool, these steps have the following additional implications:

1. Runtime initialization (see Sect. 4):

e The multiplexing tool collects the initialize and finalize function pointers for

the own tool and the client tool.

e For the initialize and finalize function call from the runtime, the multiplexing
tool calls the collected function of the own tool and the client tool.

OMPT-Multiplex: Nesting of OMPT Tools 77

2. Tool initialization (see Sect. 6):

e The tools register their callbacks with the multiplex tool.
e The multiplex tool registers callbacks with the runtime if either one of the
tools registered a callback for the event.

3. Delivery of OpenMP events (see Sect. 8):

e For each callback invocation, the multiplexing tool first calls the registered
function of the own tool, then of the client tool.

e The multiplexing tool provides tool specific data as discussed in Sect. 5.

e Exceptions for the ordering of callback invocations are discussed in Sect. 8.

4. Querying further information from the OpenMP runtime (see Sect. 7):

e Some of the OMPT functions are replaced by the multiplexing tool to allow
multiplexing of the tool specific data pointer.

4 Activating an OMPT Tool

According to the OpenMP specification, an OpenMP runtime implementation fol-
lows several steps in trying to find the function ompt__start_tool. If calling this
function returns + rue, the runtime has found an OMPT tool, otherwise the runtime
would continue finding a tool. The OpenMP specification describes the following
methods how the function can be provided: It can be

e statically linked into the application,

e dynamically linked into the application (this includes loading the library with
LD_PRELOAD) or

e provided by a dynamically-linked library listed in the OMP_ TOOL_LIBRARIES
environment variable.

For our cascading approach we limit the search space to the latter option. Each
tool selects and documents a name for searching the client tool. When including the
OMPT-Multiplex.h header, this name must be defined in the preprocessor define
CLIENT_TOOL_LIBRARIES_VAR:

##define CLIENT TOOL LIBRARIES VAR
- "<EXAMPLE> TOOL LIBRARIES"
#include <ompt multiplex.h>

This header file must be included in the tool source file that implements
ompt_start_tool. The header renames the tool’s ompt_start_tool func-
tion to overwrite this function with the cascading implementation of this
function. The cascading ompt_start_tool function invokes the renamed func-
tion of the tool and then tries to find the client tool in the libraries listed in the
<EXAMPLE>_TOOL_LIBRARIES environmental variable.

78 J. Protze et al.

5 Tool Data Pointer

In multiple occasions, the OMPT interface allows the tool to store information into a
tool data value. This value is defined to be a union of a void pointer and a 64 bit integer:

typedef union ompt_data_t
{uint64_t value; void * ptr;} ompt_data_t;

An OMPT tool can store a single value directly in this ompt_data_t value. If a
tool wants to bind more information to an OpenMP entity, the tool would allocate
memory for this information and store the address in this ompt_data_t value.

Since both, the own and the client tool, expect to store their private data into this
value, the cascading tool needs to multiplex the data correspondingly. The header
file provides two modes for the organization of the own and the client data. In the
simple mode no further modification of the own tool is necessary. In the advanced
mode the own tool is aware of the cascading tool.

Figure 2 depicts the simple mode, where both tools are unaware of the other tool.
The multiplexing header allocates a pair of ompt_data_t values and stores the
address of this pair in the runtime. This pair is used to store the ompt_data_t
value of the own and the client tool. This mechanism applies to all callbacks which
have aompt_data_t in their signature, i.e. data pointer for thread, parallel region,
and task, as well as the data pointer in the return value of the ompt_start_tool
function.

For some of these tool data objects, the life cycle might be quite short. To avoid
the overhead of the additional allocation, it is also possible that an aware tool can
provide storage for the client tool data object. This advanced mode is depicted in
Figure 3. For tools that store objects with tool-specific data (“OwnData”) in the scope
specific data pointer, it is easy to extend the object by an ompt_data_t field to
store the client data. Scopes as known from the OpenMP specification are device,
thread, parallel team, and task. The multiplexing header needs to know how to access

Fig. 2 Simple tool data
management:
Multiplex-header allocates
memory to store a pair of tool
data for own and client tool

tool_data

own_data client_data

OwnData ClientData

OMPT-Multiplex: Nesting of OMPT Tools 79

Fig. 3 Advanced tool data
management: Own tool
provides memory to store
tool data for the client tool

tool_data

OwnData . ClientData

client_data

this data. Therefore, the tool defines an accessor function for the data field of the
prototype:

ompt_data_t * get_client_data (ompt_data_t+ data);

The name of the accessor function is propagated to the multiplex header by the fol-
lowing defines:

¢ OMPT MULTIPLEX CUSTOM GET_CLIENT THREAD DATA
¢ OMPT MULTIPLEX CUSTOM GET_CLIENT PARALLEL DATA
e OMPT MULTIPLEX CUSTOM GET CLIENT TASK DATA

If the accessor macro for a scope specific data pointer is defined, the multiplexing
header passes the pointer from the runtime directly to the own tool and calls the
accessor function to pass the data pointer to the client tool. Otherwise the multiplexing
header uses the allocated pair and provides the first value to the own tool and the
second value to the client tool. If a tool does not use the tool data for a specific scope,
this macro can be an empty definition, so that the runtime data pointer is directly
passed to the client tool.

6 Initializing an OMPT Tool

When the OpenMP runtime finished initialization of internal data structures and is
ready to accept function calls from the OMPT tool, the runtime invokes the initializa-
tion function that was provided by the ompt_start_tool function (see Sect. 4):

int ompt_initialize (ompt_function_lookup_t lookup,
~ ompt_data_ t* data);

The first argument of the initialization function is a lookup function, which is used
by the OMPT tool, to find the OMPT runtime entry points. The second argument of
the initialization function is a pointer to tool specific data. This data was passed by

80 J. Protze et al.

the tool on return from the ompt_start_tool function. The multiplexing tool
makes sure to pass back the right pointers to the own tool and the client tool.

The multiplexing tool implements two versions of this lookup function, one for
the own tool and one for the client tool and passes the pointers to these functions
accordingly. For all OMPT functions—the OpenMP document calls them OMPT
runtime entry points—with an ompt_data_t argument the lookup function pro-
vides a customized function; these functions implement the multiplexing of the tool
data pointer. For all other runtime entry points, the lookup function just forwards the
query to the runtime; these function calls have no additional indirection.

Besides looking up the runtime entry points, a tool would typically register some
callback using the ompt_set_callback function. The multiplexing tool itself
doesn’t need any callbacks set; the setting of callbacks is delegated to the two cus-
tomized ompt_set_callback functions for the own tool and the client tool.
When either of the two tools registers for a callback, the multiplexing tool registers
the own corresponding callback.

7 Runtime Entry Points

The OMPT API functions provided by the OpenMP runtime are called runtime entry
points. The only way to get access to these functions is the lookup function provided
in the initialization call. The runtime does not need to implement these functions
under these names, a tool cannot directly call these functions. The advantage is that
a tool does not link against an OpenMP runtime. This allows more flexibility for the
tool, since the same tool can be used with OpenMP and non-OpenMP applications.

Furthermore, this restriction provides the guarantee to the runtime, that these
functions can only be called after the runtime is initialized; this differs from the
OpenMP runtime routines (e.g., omp_get_num_threads ()), where the runtime
needs to check whether initialization is already done.

As mentioned in the previous section, there is only a small number of runtime
entry points that need special care from the multiplexing tool. For these functions,
the own tool and the client tool expect to access their own tool specific data; so
the multiplexing tool needs to know which data should be passed to the tool. The
OMPT interface does not allow to pass additional information with the function call.
Consequently, the only way to know whether a call to a runtime entry point comes
from the own tool or the client tool is by providing them distinct functions for the
same entry point. The provided function implicitly knows whether it should access
the own tool or the client data field.

OMPT-Multiplex: Nesting of OMPT Tools 81

8 Callback Functions

An OMPT tool can register callback functions for several defined OpenMP events.
If the execution of the OpenMP program reaches an OpenMP event, the runtime
invokes the registered OMPT callback function for this event. The multiplexing tool
keeps track which tool registered a callback for each event. If both tools registered
a callback for the same event, in general the callback of the own tool is called first
and then the callback of the client tool.

In the advanced mode where the own tool provides storage for the tool data of the
client tool, this ordering might fail. For the parallel-end or the implicit-end event, the
own tool would release the data structure. The multiplexing tool would then access
the data pointer in the already freed data structure to pass it in the callback to the
client tool.

The multiplexing tool provides two different strategies for circumventing this
issue when the own tool provides storage for the client data:

1. For the callbacks that describe the end of a data environment, the multiplexing
tool invokes the callback of the client tool first.

2. The original ordering is preserved, if the own fool implements a delete function
(e.g.,delete_data ()) for the data object and registers this function by defin-
ing scope specific macros before including the multiplexing header:

void delete_data (ompt_data_t«x);
#define OMPT MULTIPLEX CUSTOM DELETE <SCOPE> DATA
~ delete data

The first strategy allows the client tool to release the scope specific tool data before
the own tool releases the tool data and deletes the pointer to the client tool data. In
the second strategy, the multiplexing tool calls the delete_data () function after
invoking the callback of the own fool and the client tool. This way we can safely
preserve the ordering. This assumes that the callback of the own ool does not destruct
the scope specific data object, but leaves this task to the delete function.

9 OMPT-Multiplex Versus OMPT"

The initial idea when designing an infrastructure to use multiple OMPT tools at the
same time was to use an approach similar to P"MPI. P"MPI is a tool for the PMPI
interface of MPI, that allows multiple PMPI tools to be loaded during execution. The
PMPI interface is different from OMPT, as a tool intercepts the MPI function calls
and then calls the PMPI function to invoke the actual function in the MPI runtime
library. P"MPI then redirects the function call to the next tool before finally the MPI
runtime library is called.

Based on this model, OMPT" would be a stand-alone OMPT multiplexing tool
which loads multiple OMPT tools, distributes callback functions to all loaded tools

82 J. Protze et al.

and multiplexes all the tool specific data. The problem we are facing with this
approach is the function pointer passed in the lookup function. The function pointer
needs to be a C function pointer. There is no way to pass additional information to
the tool for the lookup function. With additional information passed, it would be
possible to implement the scope specific functions in a way, that they multiplex the
tool specific data and deliver the right data to the right tool. A modern C++ approach
of implementing this dynamic multiplexing might be the use of lambda expressions.
With a capturing lambda expression, the information about the tool might be coded
into the function object. The problem is again, that no plain C function pointer can
be derived from a capturing lambda expression, because the additional information
cannot be encoded. The only way to implicitly encode the information about the tool
instance into the OMPT runtime entry point is to statically provide versions of the
function that encode the access to the right tool data. This would limit the maximum
number of tools that can be used at the same time.

10 Recursive Use of OMPT Multiplex

For the approach with the OMPT-Multiplex header, there is no limitation in the
maximum number of tools that can be nested. As long as each tool includes the
header, the number of tools that can be nested recursively is only limited by the stack
size.

The remaining limitation of this approach is that each tool library is compiled
with a hard coded name for the environmental variable. Therefore the same tool
library cannot be loaded twice since this would lead to an infinite recursion. So, if
for some reason the same tool needs to be loaded multiple times, multiple versions of
the library are necessary that are compiled with different names for the tool libraries
variable. Also two different tools cannot use the same tool libraries variable.

For tools that use an execution wrapper, inserting the tool into the chain can
happen transparently to the user. The execution wrapper assigns the content of
OMPT_TOOL_LIBRARIES to the tool libraries variable of the own tool and updates
the OMPT _TOOL_LIBRARIES to point to the own tool library.

11 Conclusion

In this paper we proposed a method to enable the usage of multiple OMPT tools at the
same time. We provide a freely available implementation of this method in form of a
header-file-only solution, which is simply included by the OMPT tool. A requirement
is that the header file is included by the tool at compilation. For proprietary tools that
are delivered only as precompiled binary, the vendor would need to use this header to

OMPT-Multiplex: Nesting of OMPT Tools 83

enable the proposed workflow. With this work we also proved that the specification
of OMPT allows the usage of multiple OMPT tools at the same time, although the
specification only supports a single tool.

References

(98]

. OpenMP Architecture Review Board: TR4: OpenMP Version 5.0 Preview 2. http://www.

openmp.org/wp-content/uploads/openmp-tr6.pdf

Schulz, M., de Supinski, B.R.: PNMPI tools: a whole lot greater than the sum of their parts. In:
Proceedings of the 2007 ACM/IEEE Conference on Supercomputing. SC 2007, pp. 1-10 (2007)
OpenMP Affinity Tool. https://git.rwth-aachen.de/OpenMPTools/OMPT- Affinity-tool

Lorenz, D., Dietrich, R., Tschiiter, R., Wolf, F.: A comparison between OPARI2 and the OpenMP
tools interface in the context of Score-P. In: Proceedings of the 10th International Workshop on
OpenMP IWOMP), Salvador, Brazil, September 2014. LNCS, vol. 8766, pp. 161-172. Springer
International Publishing (2014)

Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J., Tallent, N.R.:
HPCToolkit: tools for performance analysis of optimized parallel programs. In: Concurrency
and Computation: Practice and Experience, pp. 685-701 (2010)

Protze, J., Hahnfeld, J., Ahn, D.H., Schulz, M., Miiller, M.S.: OpenMP tools interface: synchro-
nization information for data race detection. In: Scaling OpenMP for Exascale Performance and
Portability - 13th International Workshop on OpenMP, IWOMP 2017, Stony Brook, NY, USA,
September 20-22, 2017, Proceedings, pp. 249-265 (2017)

http://www.openmp.org/wp-content/uploads/openmp-tr6.pdf
http://www.openmp.org/wp-content/uploads/openmp-tr6.pdf
https://git.rwth-aachen.de/OpenMPTools/OMPT-Affinity-tool

SCIPHI Score-P and Cube Extensions)
for Intel Phi s

Marc Schliitter, Christian Feld, Pavel Saviankou, Michael Knobloch,
Marc-André Hermanns and Bernd Mohr

Abstract The Intel®Xeon Phi™ Knights Landing processors offers unique features
with regards to memory hierarchy and vectorization capabilities. To improve tool
support within these two areas, we present extensions to the Score-P measurement
infrastructure and the Cube report explorer. With the Knights Landing edition, Intel
introduced a new memory architecture, utilizing two types of memory, MCDRAM
and DDR4 SDRAM. To assist the user in the decision where to place data struc-
tures, we introduce a MCDRAM candidate metric to the Cube report explorer. In
addition we track all MCDRAM allocations through the hbwmalloc interface, pro-
viding memory metrics like leaked memory or the high-water mark on a per-region
basis, as already known for the ubiquitous malloc/free. A Score-P metric plugin that
records memory statistics via numastat on a per process level enables a timeline anal-
ysis using the Vampir toolset. To get the best performance out of Intel®Xeon Phi™,
the large vector processing units need to be utilized effectively. The ratio between
computation and data access and the vector processing unit (VPU) intensity are
introduced as metrics to identify vectorization candidates on a per-region basis. The
Portable Hardware Locality (hwloc) Broquedis et al. (hwloc: a generic framework

M. Schliitter () - C. Feld - P. Saviankou - M. Knobloch
Forschungszentrum Jiilich GmbH JSC, Jiilich Supercomputing Centre,
Forschungszentrum Jiilich GmbH, 52425 Jiilich, Germany

e-mail: m.schluetter @fz-juelich.de

C. Feld
e-mail: c.feld @fz-juelich.de

P. Saviankou
e-mail: p.saviankou@fz-juelich.de
M. Knobloch
e-mail: m.knobloch@f{z-juelich.de

M.-A. Hermanns - B. Mohr

JARA-HPC, Jiilich Supercomputing Centre, Forschungszentrum Jiilich GmbH,
Jiilich, Germany

e-mail: m.a.hermanns @fz-juelich.de

B. Mohr
e-mail: b.mohr@fz-juelich.de

© Springer Nature Switzerland AG 2019 85
C. Niethammer et al. (eds.), Tools for High Performance Computing 2017,
https://doi.org/10.1007/978-3-030-11987-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11987-4_6&domain=pdf
mailto:m.schluetter@fz-juelich.de
mailto:c.feld@fz-juelich.de
mailto:p.saviankou@fz-juelich.de
mailto:m.knobloch@fz-juelich.de
mailto:m.a.hermanns@fz-juelich.de
mailto:b.mohr@fz-juelich.de
https://doi.org/10.1007/978-3-030-11987-4_6

86 M. Schliitter et al.

for managing hardware affinities in hpc applications, 2010 [2]) library allows us to
visualize the distribution of the KNL-specific performance metrics within the Cube
report explorer, taking the hardware topology consisting of processor tiles and cores
into account.

1 Introduction

Many-core architectures like the Intel®Xeon Phi™ provide opportunities and chal-
lenges for intra-node optimization of applications. The Inte]l®Xeon Phi™ Knights
Landing (KNL) comes with a unique memory hierarchy and a 512-bit-wise vec-
tor processing unit. To gain the full benefits of the new features, the user needs to
understand how effectively an application makes use of the underlying hardware
capabilities. The objective of the SCIPHI (Score-P and Cube extensions for Intel
Phi) project has been to incorporate this knowledge in the Score-P and Cube tools
and provide it to their users.

Figure 1 shows a schematic image of the KNL chip. It highlights some areas of
interest for the SCIPHI project, specifically the memory topology and tiled hardware
layout.

A KNL chip consists of 38 uniform tiles [15], of which at most 36 are enabled.
Each tile comes with two Silvermont cores—supporting up to four hyperthreads—
and two Advanced Vector Extensions, known as AVX-512 [5] vector processing units
(VPU). The high number of VPUs and the lower clock frequency of the Silvermont
cores, compared to recent Xeon CPUs, makes vectorization not just an opportunity,
it becomes a necessity for efficient node usage.

Besides the AVX-512 vector units, KNL is special with regards to memory. It
comes with two types of memory, conventional DDR4 SDRAM providing high
capacity and MCDRAM (High-Bandwidth Memory) providing high bandwidth.
There are eight MCDRAM modules integrated on package, providing a total of
16 GB high bandwidth memory. These devices come with their own memory con-
troller, providing a total bandwidth of more than 450 GB/s (Stream Triad [15]). The
DDR4 SDRAM memory, on the other hand, is connected via two controllers, serving
three channels each. The maximum capacity is 384 GB and the bandwidth can reach
up to 90 GB/s.

The memory can be configured at boot time in one of three modes. In cache mode,
MCDRAM serves as a cache for DDR4 SDRAM. In flat mode, MCDRAM is treated
as standard memory in the same address space as DDR4 SDRAM; the memkind
library'—a heap manager built on top of jemalloc>—allows for MCDRAM heap
allocations via the hbwmalloc APL. Hybrid mode is a combination of cache and flat
mode, where a portion of MCDRAM serves as cache while the remainder can be

Uhttps://github.com/memkind.
Zhttp://jemalloc.net/.

https://github.com/memkind
http://jemalloc.net/

SCIPHI Score-P and Cube Extensions for Intel Phi 87

Fig. 1 Intel®Xeon Phi™ 2x16 x4
Knights Landing architecture MCDRAM | [MCDRAM x4 DMI | McpraM | [MCDRAM

. 1]]

36 Tiles
connected by
2D Mesh
Interconnect

3 DDR4 channels

o
(5]
c
c
<

i<
S

<

14

(=)

a

™

MCDRAM | | MCDRAM MCDRAM MCDRAM

use a standard memory. Cache friendly applications are likely to benefit from cache
mode. There are applications though that might benefit from explicit MCDRAM
memory management in flat mode.

In this paper we present extensions to the scalable performance measurement
infrastructure for parallel codes Score-P [9] and the performance report explorer
Cube [16] with regard to the special memory and vectorization features of the
Inte]®Xeon Phi™ Knights Landing processor. In particular, we implement means to
track memory allocations and deallocations for both, DDR4 SDRAM and MCDRAM
memory. In addition, a MCDRAM candidate metric on a per region basis is intro-
duced. With respect to vectorization, we present VPU-related metrics that point the
user to code regions that would benefit from vectorization. In addition we utilize
the Awloc [2] library to visualize the distribution of the KNL-specific performance
metrics, taking the hardware topology into account.

The paper is structured as follows. Section2 contains a survey of related work.
Sections 3 and 4 focus on the two main topics, memory analysis and vectorization sup-
port. Section 5 presents the changes and requirements for the Score-P measurement
work-flow that result from the previous sections. In Sect.6 we present the Score-P
hardware topology visualization in Cube using the example of the KNL architecture.
We close with a conclusion and an outlook of future extensions in Sect. 7.

88 M. Schliitter et al.

2 Related Work

Investigating memory usage, performance analysis tools, such as Score-P [9],
TAU [18], and Vampirtrace [8], follow their call-path oriented approach in assigning
measurement data to code regions. Jurenz et al. [7] highlight different methods for
querying memory data and how they are used in Vampirtrace. In contrast, tools, such
as Intel VTune [6] or HPCToolkit [1], provide a data-centric perspective. For exam-
ple, Liu et al. [10] present an extension to the HPCToolkit, using instruction-based
sampling to record memory usage through relevant events, pinpointing to an effective
memory address.

Vectorization and memory related metrics use hardware counters as basis for
calculation, accessed either directly or through third party software. PAPI [3] provides
such access to hardware counters, in the KNL case also to the node level uncore
counters, which are required for the analysis of memory accesses and bandwidth.
As an alternative, the LIKWID tools [19] allow similar use of counter information
on the KNL, including access to shared counters. Wylie et al. [21] highlights that
depending on the type measuring multiple hardware counters at the same time can be
an issue and proposes a solution through multiple manual measurements. Reinders
et al. [15] suggest metrics and thresholds for the KNL architecture, which should
serve as guidelines for the user during optimization.

Scalasca version 1.x [12], still using its internal measurement system, provided
topologies for Cube, while such support in Score-P is scheduled for a future release.

3 Memory Analysis

The availability of high bandwidth MCDRAM on the Intel®Xeon Phi™ Knights
Landing provides unique opportunities as well as challenges for the application
developer. The potential increase in bandwidth when using MCDRAM is counter-
balanced by the reduced capacity available. With only 16 GB MCDRAM, compared
to the maximum of 384 GB DDR4 SDRAM, the use of MCDRAM has to be man-
aged carefully. If the KNL is booted in cache mode, the developer has no direct
access to the MCDRAM, but the system uses this up to 16 GB as an additional,
transparent cache for DDR4 SDRAM data. However, if the node is booted in flat
mode—and to a degree in hybrid mode—the developer is responsible to explicitly
manage allocations from MCDRAM. In these modes, at least one additional NUMA
node is present, depending on the selected cluster mode. Allocations and deallo-
cations can be managed in several ways. One way is to utilize the NUMA Control
utility (numactl). This method requires no code changes but the allocations must
completely fit into MCDRAM, as all memory is allocated from this NUMA node,
including the data segments and stack. Another method without the need of code
changes is the use of autohbw, which comes with the memkind package. This library
allocates memory chunks of a certain size range transparently from MCDRAM. Yet

SCIPHI Score-P and Cube Extensions for Intel Phi 89

another way to handle allocations into MCDRAM is provided by the hbwmalloc API
that also comes with the memkind library. This API offers replacements for glibc’s
malloc routines in C and C++ and the FASTMEM directive for Intel Fortran. This
method provides the maximum amount of control but comes at the cost of mandatory
code changes.

Given these three methods to explicitly manage MCDRAM and the limited
amount of high bandwidth memory, the developer is faced with the question of
what and how much, if not all, to allocate from MCDRAM. By providing relevant
information about memory usage, tools can support the user in the decision-making
process.

3.1 DDR4 SDRAM and MCDRAM Usage

If the working set fits into the 16 GB of MCDRAM, the easiest way to utilize the
high bandwidth memory is to use numactl. The command numactl -H gives us
the available NUMA nodes and withnumactl -m 1 ./application we start
a program that allocates all memory from NUMA node 1, which maps to MCDRAM
in flat/quadrant mode.

If the working set is larger than the available 16 GB, shifting all memory allo-
cations to MCDRAM will fail. To determine the actual memory requirements of an
application, one can observe fine-grained allocations by tracking calls to malloc,
free, and similar functions.> A more course-grained approach is to monitor the
output of numactl, numastat, or getrusage. The open-source measurement
infrastructure Score-P [9] already provides the functionality to observe the fine-
grained allocations by wrapping the necessary library calls. This allows to determine
allocations and deallocations on a per-region and per-thread basis. It also points the
developer to leaked memory, i.e., it shows allocations that haven’t been deallocated.
Last but not least it keeps track of the used memory’s high-water mark, i.e., the max-
imum amount of memory allocated at a time and points the developer to the code
region where this maximum was reached. These recorded memory metrics can be
analyzed in CUBE’s visualization of call-path profiles [16] and be timeline-visualized
by the Vampir trace analyzer [8], and potentially any other tools that support the open
Score-P output formats cubex and OTF2 [4].

The memory allocation tracking works only for conventional dynamic memory
allocations, i.e., allocations from DDR4 SDRAM, asmalloc and friends don’t allo-
cate from MCDRAM. By observing these conventional allocations one can estimate
the memory requirements of an application and determine if the entire working set
would fit into the 16 GB MCDRAM. The recorded allocations also provide the entire
set of candidates that might benefit from being moved to MCDRAM.

3malloc, realloc,calloc, free, memalign,posix_memalign,valloc.

90 M. Schliitter et al.

To also observe allocations, find leaks, and the high-water mark when explic-
itly working with MCDRAM, it seemed natural to extend Score-P to intercept the
hbwmalloc API. In flat mode, this API allocates from MCDRAM and can be used
as a drop-in replacement for the usual malloc/free set of functions. To track
the hbwmalloc allocations, we added the following functions to the set of wrapped
library functions, this way providing the same analysis opportunities as for conven-
tional allocations: hbw_malloc, hbw_calloc, hbw_realloc, hbw_free,
hbw_posix_memalign, and hbw_posix_memalign_psize.

Tracking allocations and deallocations in such a fine-grained way can induce sig-
nificant measurement overhead with regards to the Score-P-internal memory require-
ments to perform the tracking, in particular in cases with excessive numbers of heap
memory operations. Furthermore, a high-water mark of memory consumption below
16 GB does not guarantee that the application will fit entirely into MCDRAM. This
is due to the fact that memory is allocated on a per-page basis (usually 4 K) on first
touch. The first touch may happen way later in time than the malloc call and freed
memory may not get reused. The actual memory consumption might be larger than
reported by just tracking memory allocation and deallocation routines.

To get a more accurate measure of the used memory on a per-page basis we use the
numastat command as a complimentary data source. It provides per-NUMA-node
memory statistics for processes and the operating system. This allows not only for
monitoring conventional memory allocations, but also for MCDRAM allocations
in arbitrary cluster modes. Depending on the cluster mode—quadrant, SNC-2, or
SNC-4, selected at boot time—a KNL chip in flat memory mode reports two, four,
or eight NUMA nodes per quadrant, equally distributed among DDR4 SDRAM and
MCDRAM. To monitor the evolution in time of these NUMA nodes with regards to
memory, we implemented a Score-P metric plugin. Score-P metric plugins are (third-
party) shared libraries that are linked to the measurement core in order to provide
any kind of additional metrics. They are modeled after VampirTrace’s [8] Counter
Plugins [17]. Our numastat plugin is executd asynchronously, i.e., it is triggered at
regular intervals within an extra thread, analyses the numastat output for the current
process (numastat -p <PID>)and feeds the per-NUMA-node memory statistics
into a Score-P timeline.

Figure 2 shows the visualization of such a timeline, generated by a simple Jacobi
solver, using the Vampir tool set. For this demonstration some memory requests have
been explicitly allocated from MCDRAM, using the hbwmalloc API. We can observe
the DDR4 SDRAM and MCDRAM allocations in Vampir via an additional metric
timelines alongside the master timeline. In our example, the numastat plugin records
three additional timelines, the memory usage for each of the two NUMA nodes and
the total memory usage. Here “Node 0”(2) corresponds to DDR4 SDRAM and “Node
17(3) to MCDRAM.

The polling frequency of the numastat plugin can be chosen via an environment
variable. If we are solely interested in the memory evolution over time we might
accept the overhead introduced by a high polling frequency. But even with a low
polling frequency in relation to the application run time the memory usage should
be attributable to specifc phases of the application.

SCIPHI Score-P and Cube Extensions for Intel Phi 91

v
File Edit Chart Filber Window Help

ExBLEBOTEELS B l_
imeline Function Summary.

1s 2s 3s as Ss 63 Ts All Processes, rulated E...
o 2008 o
* Master thread.0
MPI_Allreds =
OMP thread 1 RO 0 4 A ﬁm““
~Master thread:1 41,856 s B MPI_I._ hread
OMP thresd 11 1| SN AT | 114 41 1 | 19304 3 I$om. 155
*Master thread:2 = .04, I W
OMP thread 1:2 L T S A R L 1190.751?5, 33:...23;
MPI Rank 0, Values of Metric “Total Memary Consumption via numastat” over Time i [
1 2.783 5| Excho...iData
""" i e e 1946 5| ISomp....c:80
? 1.403 s | Jacobi

R P 0.871 s MPI_lrecv
0.739 5| MPI_Isend
0.675 s |Initia... Matrix

MPI Rank 0, Values of Metric “Node 0 Memory Consumption vis numastat” over Time 0572 s 1Som._.[178
0.424 5 |MPI_Bcast

LSRN

2 E 0314 2| 1$om...:162
? 3 Function Loend
16— eeaeda.s ot B MPI
10 g B OMP_PARALLEL
s B OMP_LOOP
L W OMP_SYNC
MP| Rank 0, Values of Metric "Node 1 Memary Consumption via numastat” over Time W OMP AR
" 12 H Application
1 ! RTINS w— Monitor
o9
£ 06
03
o
(@) Vampir Timeline
File Display Plugins Help
Restore Setting = Save Settings
Absolute = Absolute = Absolute g
B Metrictree | | Mcall tree | [Fiat view | _ EEsystem tree | B source | ._Sf.org_-l:‘-k
® 1,340e7 Visits (occ) ol = - 0 main|] =
® 2044095 Time (sec) o 0 Init | O 0 node cknight3
O 0.000 Minimum Inclusive Time {sec) O 0 MPI_Init_thread = 1.584e6 MPI Rank 0
= 18.839 Maximum Inclusive Time (sec) o 0 MPI_Comm_rank ® 1.584e6 MP1 Rank 1
O 0 bytes_put (bytes) o 0 MPI_Comm_size = ®m 1.584e6 MP1 Rank 2
D 0 bytes get (bytes) o 0 atoi @ 1.584e6 MP1 Rank 3
1.020e8 ALLOCATIO! (bytes) 0 0 MP|_Bcast ® 1.632e6 MPI Rank 4
1.020e8 DEALLOCATION SIZE (bytes + §.803e7 hbw_mallo ® 1.584e6 MP1 Rank 5
O 0 bytes_leaked (bytes) o 0 InitializeMatrix ® 1.584e6 MPI Rank 6 -
® 1.632e6 maximum_heap_memaory_allocat: O 0 Jacobi ® 1.584e6 MPI Rank 7 =
® 1.632e6 Process memory usage (Bytes) =} - 3.402e7 malloc) B EL 00
b AABAIN bukar cant Dhatasl o [— N EvehanaalaeahiliniNats 7| | Al (192 elements) m
fo 2.04e8 (200,00%) 1.02e8(0 1.02e8 (50.00%) 2.04e8 0 0(0.00%) 1.02e8
I | L |
| .
v
(b) Cube Profile

Fig. 2 Memory consumption over time as reported by numastat, separated into DDR4 SDRAM
(Node 0), MCDRAM (Node 1), and Total in the Vampir timeline, alongside with a corresponding
Cube report with activated hbwmalloc tracking

3.2 MCDRAM Candidates

If the working set does not fit into the 16 GB of MCDRAM it might be beneficial to
allocate parts of the working set datastructures into high bandwidth memory using the
hbwmalloc API. But such a change in allocation does not always improve the runtime.
For the CloaverLeaf [13] hydrodynamics mini-app, e.g., we see runtime reduction due
to selective allocations into MCDRAM as compared to pure conventional allocations
only for high overall DDR4 SDRAM bandwidth values, see Fig.3. To create this

92 M. Schliitter et al.

- 90
n
]
u L r 70
n
L4
50 0
& 0]
20
- 30
0
15 +]
N a i F 10
2 10 A A 2
B A
(=1
w
-
5 4
A DDR4 SDRAM bandwidth [GB/s] B
Ll R Speedup DDR4 SDRAM only A
Speedup DDR4 SDRAM + MCDRAM
T T T T T T x e
14 8 16 32 48 64 68
threads

Fig. 3 CloverLeaf3D on a single KNL. Baseline for speedup is DDR4 SDRAM-only (blue) on a
single thread. For DDR4 SDRAM + MCDRAM (green), some data structures were manually allo-
cated into MCDRAM. DDR4 SDRAM bandwidth (red) is for the entire application, not individual
kernels

graph, we manually changed the allocation for bandwidth sensitve datastructures
using the FASTMEM directive according to the manually found optimum in [15]. We
see improvements over the DDR4 SDRAM-only variant for higher thread counts that
correspond to higher overall bandwidth. To obtain the bandwidth, we counted the
number of read and write accesses to DDR4 SDRAM (UNC_M_CAS_COUNT .ALL)
with the help of PAPI [3], multiplied by the cache-line size and divided over time. It
is important for the process to have exclusive acccess to the KNL-node as obtaining
the memory accesses is done via the uncore counters, which provide data for the
entire node only, not for individual processes or threads. Hence, this analysis does
not work, if the KNL-nodes is shared among jobs or users.

With Score-P, we measure the bandwidth values per code-region outside of
OpenMP parallel regions, due the given uncore counter restrictions. Depending on
the application, there might be a lot of code regions that show a high bandwidth value.
To find the most bandwidth sensitive candidates among these regions, we need to sort
them by their last-level cache-misses (LLC). This gives us the MCDRAM candidate
metric per code region, as shown in Fig. 4. We derive the MCDRAM candidate met-
ric, i.e., we sort the high bandwith callpaths by their last-level cache misses, in the
Cube plugin KNL advisor (see also Sect.5.2). As input we use the PAPI-measured
access counts for each DDR4 memory channel and the PAPI-measured LLC counts.
We take care of measuring the memory accesses only per-process while running
exclusively on a single KNL node.

SCIPHI Score-P and Cube Extensions for Intel Phi 93

file Display Plugins Help

Restore Setting = Save Settings Set threshold 0.025
Absolute =| | Absolute = |Absolute -
B Metric tree B Call tree | [Flat view Confguration B sunburst | [l statisties | B KniAdvisor [«
® 3.8042306 Visits (occ) =1 [237170 MAIN_ o =
W 1499294393 Time (sec) W 0.47232 clover_module.clover_init_comms | | Calipath | Bandwidgth (==
0 0.00000 Minimum Inclusive Tima | | 0 9.81091 'Somp paraliel @clover_leal190:43 1 |1somp do @POV kemnel f90:122 81,6518
W 235.36657 Maximum Inclusive T | | & 54.11566 initialise_ = =
O 0 bytes_put (bytes) W 1.93234 hydro_ 2 |t1somp do @advec_mom_kemal 190:96 82.4802
O 0 bytes_get (bytes) | 1,59303 timer, 3 | do @adw K LIG0: 108 82 4859
O 0 ALLOCATION_SIZE (bytes) W 77.80841 timestep_module timestep_ i) S0P 00 GRCYOF Mot Amie 1P0:
O 0 DEALLOCATION SIZE (bytes) W 1.21030 pdv_madule.pdv_ 4 |'somp do @advec_mom_kernelf90:415 83.0509
O 0 bytes_leaked (bytes) @ 4.36333 pdv_kemel_modube.pdv_kemel —— oam ki X
O 0.00000 maximum_heap_memar 0 21.54893 Tsomp parallel @PAV_kermnelf90:70 5 [!somp do @advec_mom kemelr90:120 82.1397
W 3.70354010 LLC_MISSES (#) W 83.28365 'Somp do @PdV_kernel 190:74 6 [!Somp do @accelerate_kernel 190:60 82.601
® 5.2001310 knl_unc_bmc0_UNC | ™ 0.93796 'sonr; lrnpll(:t mrner @GPV kermel —{ =
W 5.20726e10 knl_unc_imel_UNC_| I g 129 |7_|!somp do @advec_mom_kernel 190:244 82.2733
W 520598210 knl_unc_ mc2_UNC_| W 1.07146 clover_ mml IP clover 8 |'somp do @advec_mom_kemael f80:153 818722
® 5.21113e10 knl_unc_ime3_UNC_| W 50.36414 Ideal_gas_module.ideal_gas_ — = =
W 5.20907e10 knl_unc_imed_UNC_| | 0 40.86721 update_halo_madule.update_halo 9 |!somp do @advec_mom _kernel190:329 82.2273
520016210 knl_unc_imc5_UNC_| | W £1.04390 revert_module.revert_ 10 | 1som Badw o kernel 190:
® 1792 bytes_sent (bytes) B B2.39751 accelerale_module accelerate_ 103 1womp da @edvec_morm Nemel 0131 (B14308
W 1792 bytes_received (bytes) ® 83.00910 flux_calc_module.flux_calc 11 |!somp do @reset_fleld_kermel f90:70 81.4167
W 23536657 qtime W 75.600952 advection_module.advection_ = T —ry .
79.14743 DDR Bandwitith (GR/s! # B1.03167 reset_field_module.reset_field |12 |!somp do Greset field kernel f30:80 81.4019
W 77.61010 field_summary_ 13 ['somp do @reset_field_kernel f90:90 81.3203
W 0.10796 clover_module clover_finalize_
14 |150mp do @revert_kermnel.f90:43 81,7238
15 | 1s0mp do @revert_kernel.190:53 818089
16 |'5omp do @reset_field_kernel 190:60 81.5125
17 |1somp do @reset_field_kerel f90:50 81.6965
18 |1somp do Gflux_calc_kernel f90:69 82.3607
19 |'somp do Gadvec_mom_lkernel t90:142 81,6303
20 |!'somp do @advec_mom_kernel190:369 82.3743
21 |!somp do @Mux_cale_kernel 190:57 82.1821
22 |'somp do @advec_cell kemelf90:96 82.3678
23 |1somp do @advec_cell kemel f90:266 82.2527
24 |1somp do @advec_cell_kemelf90:192 82.0507 55

83.23 (99.94%) B3.28{ .00 83.23 (100.00%) 83.23

Fig.4 Candidates for allocations in HBM: Highest bandwidth regions are sorted by last level cache
misses

As Score-P and Cube purely work on code regions, the MCDRAM candidates
are also code regions. As a drawback, if a candidate code region accesses several
data structures, we cannot point to the most bandwidth sensitive structure. Vtune [6],
HPCToolkit [1, 10] or ScaAnalyzer [11] might provide more detailed insight.

In addition to this drawback, the above approach is not generally applicable for
tools as accessing counters from the uncore requires priviledged access to a machine,
either by setting the paranoia flag or by providing a special kernel module. On
production machines, this access is, for security reasons, often not granted. This
does not only apply to memory accesses, but to all uncore counters.

4 Vectorization Assistance

In this section we focus on user support for vectorization, the second extension area
of the SCIPHI project. Specifically, we investigate loops with regard to their degree of
vectorization and offer suggestions for optimization candidates. This required hard-
ware counter measurements, obtained in multiple runs, due to the limited number of
available counter registers. In the context of counter measurements this is not unusual
for the Score-P work-flow. The suggestion of specific optimization candidates on the

94 M. Schliitter et al.

other hand is a deviation from the standard Score-P metric semantics. The Score-P
metric concept operates on the actual value of a metric (in absolute or relative terms)
and analysis sometimes requires implicit information, e.g. if a higher value is worse
than a small value. This approach leaves the decision about the relevance of a metric
value of a certain call-path to the user. They need to judge the severity of an issue
based on the knowledge of the hardware architecture, the source code, the input
data, the use case, or even external parameters. Providing a generic set of thresholds,
deciding if a metric value is problematic, is a hard problem in general, as too many
parameters are involved, some outside the scope of the performance analysis tool. In
the case of vectorization assistance we used the cooperation with Intel® to investigate
the use of explicit knowledge about the architecture for providing such thresholds in
that limited context. In the following we describe the metrics we focused on and the
challenges they pose for the Score-P work-flow and analysis.

4.1 Metrics

Before we can generate the candidate lists for vectorization optimization in Sect. 5.2,
we need to define the metrics that form the basis for the selection. We focus on
the three metrics, that are listed in Table 1. The first metric calculates the compu-
tational density, i.e. the number of operations performed on average for each piece
of loaded data. The .1 compute to data access ratio can be used to
judge how suitable an application is to run on the KNL architecture. Ideally, opera-
tions should be vectorized and each datum fetched from L1 cache should be used for
multiple operations. Table I shows the formula as number of vector operations vs.
the number of loads seen by the L1 cache. Similar to this, the L2 compute to
data access ratio is calculated as the number of vector operations against
the loads that initially miss the L1 cache. While the L1 metric is critical in estimating
a codes general suitability, the L2 metric is an indicator whether the code is operating
efficiently. The thresholds, as listed in Table 1, are considered the limits where an
investigation into the code section’s vectorization would be useful. These limits are
based on recommendations of Intel® [15] for the KNL architecture and while these
hold true for most applications running on KNL, they are only guidelines and should
be applied with care.

An additional metric, the VPU intensity, offers a rule of thumb on how well
a loop is vectorized, calculating the proportion of vectorized operations on total
arithmetic operations. This metric should be applied only to small pieces of code
and certain non-arithmetic operations, such as mask manipulation instructions, are
counted as vector operations, which can skew this ratio.

Table 1 defines the metrics as ratios of hardware counters provided by the KNL
architecture. These can be accessed in Score-P through the PAPI metrics interface
and can measured at a call-path level on each thread. To calculate all derived metrics,
multiple native hardware counters have to be recorded. Since the KNL architecture
provides only two general purpose counters per thread, multiple measurements have

SCIPHI Score-P and Cube Extensions for Intel Phi 95

Table 1 Vectorization metrics and their thresholds

Metric: L1 Compute to data access ratio Threshold: < 1

UOPS_RETIRED.PACKED_SIMD / MEM_UOPS_RETIRED.ALL_LOADS

Metric: L2 Compute to data access ratio Threshold: < 100« L1 Compute to data access ratio
UOPS_RETIRED.PACKED_SIMD /MEM UOPS_RETIRED.L1_MISS_LOADS

Metric: VPU intensity Threshold: < 0.5

UOPS_RETIRED.PACKED_SIMD /

(UOPS_RETIRED.PACKED_SIMD + UOPS_RETIRED.SCALAR_SIMD)

to be used to obtain the full set of counters required. To facilitate a consistent user
experience, the Score-P/Scalasca workflow has been extended to automate multiple
runs with varying settings, which we describe in the following section.

5 Measurement Work-Flow

The analysis workflow for users of Scalasca comprises (1) instrumentation, (2) mea-
surement, and (3) result examination. The analysis options presented in the previous
sections require an adaption of this workflow, as multiple measurement runs need
to be conducted before the results can be examined. Additionally, the results of the
individual measurements need to be merged before examination to provide a holistic
view across all of the different measurements. Furthermore, Cube needs to compute
possible optimization candidates based on the unified results in an additional analysis
step. To retain usability, we adapted the Scalasca toolset to automate the necessary
measurements and post-processing steps.

5.1 Multi Run

The SCIPHI workflow needs multiple measurement runs, as the required hardware
counters cannot be obtained by a single measurement. It is a known limitation of
hardware performance counters that only specific combinations of counters can be
combined in a single measurement [21]. The counters required for the analyses in
SCIPHI need to be obtained in multiple measurements. So while the changes to the
measurement work-flow are driven by the specific use case of SCIPHI, the generic
implementation of the workflow adaptation also benefits other hardware counter
measurements. Further benefiting scenarios are the quantification of variations in
measurement, or the verification of statistical stability of results.

96 M. Schliitter et al.

We implemented this adapted workflow as part of the Scalasca convenience com-
mand scan. As scan already automates the run of multiple execution steps—
measurement and subsequent trace analysis—it is the natural target for also orches-
trating multiple profile measurements. The basic mechanism of different execution
settings per measurement is using environment variables. In principle, this allows
arbitrary changes to the execution environment of each of the different runs, how-
ever, for the specific case of the KNL analysis the parameters have to be chosen
carefully as the ability to merge the single run results depends on the similarity of the
application runs. The new mode of multiple runs is controlled by input parameters of
scan. The user has to specify the number of runs and the sets of variables for each
run. Because the variables parameter can have a wide range of complexity, two ways
of specification are offered: (1) a string combining all setting and (2) a configuration
file.

Using a single string to specify the individual runtime parameters is convenient
only for small parameter sets. Parameters within the string can be separated by two
types of separators:% as run separator and | as key-value pair separator. An example
for multiple key-value pairs is given below:

SCOREP_METRIC_PAPI=PAPI_TOT_CYC ‘ SCOREP_TOTAL_MEMORY=33M

Such strings can be concatenated with an additional % between settings for each run,
where the i-th sub-string indicates the environment settings for the i-th run. Empty
sub-strings, indicated by %%, specify runs without special run configuration. If the
configuration string contains less sub-strings as there are runs configured, scan
uses as many of the sub-strings for its runs as available and assumes any missing
sub-string at the end to be empty.

Using a configuration file is more practical when using a large number of variables
or runs. A valid configuration file is a text file with one variable definition (key-value
pair) per line and lines starting with a % as run separators. Analog to shell style
comments lines starting with # as well as empty lines are ignored.

In either case per-run variables can only be used if they are not already set to a value
in the current environment enabling the use of global and local variables and a strict
separation of both. With these changes scan creates a single experiment directory
with sub-directories containing the numbered results of the individual steps.

5.2 Cube Tools

Given successful measurements, further analysis is performed by Cube. In recent
releases, the Cube GUI has been extended by a flexible plugin API [16], which
allows the easy addition of new capabilities through feature-specific plugins. In
the context of this work, Cube needed to be extended in two aspects. First, the
management of multiple measurement results per run and their combination into a
single unified result. Second, the analysis generating optimization suggestions based

SCIPHI Score-P and Cube Extensions for Intel Phi 97

on the criteria presented in the Sect. 4. Given their different nature, these aspects are
supported through two separate plugins: Spotter and KNL Advisor.

The Spotter plugin manages the creation of a single Cube profile from the multi-
ple measurements found in the measurement archive. It scans a given directory and
merges any found Cube profile to the joint profile one after the other. Any new met-
ric found in a single profile is added to the joint Cube profile. This way, all metrics
existing in any of the profiles will be present in the joint Cube report containing all
partial counter recordings. During the merge process metrics existing in all profiles
like time are replaced by the last instance in the merge chain. Therefore, a mea-
surement run without additional counters can be used to provide low overhead time
information as suggested in Sect. 5.1. With the complete set of base metrics Cube can
calculate the derived metrics described in Sect.4.1. As counters from possibly dif-
ferent measurement steps are combined, the user must consider the results with care
and place them in context of the application’s deterministic and repeatable behavior.

The KNL Advisor processes the joint profile generated by the Spotter plugin and
applies the thresholds defined in Sect.4.1. Based on these thresholds it generates a
list of possible candidates for optimization referring to code location and triggering
metric for each incident. As mentioned before, automatically applying thresholds
bears the risk of creating false or irrelevant information. As most of the metrics
generally make sense only for small code regions with focus on loop optimization,
the calculation of the metrics and their candidates is restricted to loops and their
children in the call tree. This still allows the user to focus on the most relevant parts
from a vectorization point of view and their respective sub-trees while reducing the
clutter noticeably. Loops are special code regions marked during instrumentation and
recorded during measurement. Score-P allows for measurement of two different loop
constructs: (1) OpenMP loops, which as automatically detected during instrumenta-
tion, and (2) user-defined loops, which are manually instrumented using Score-P’s
user-instrumentation API. To narrow down the list of candidates even further, they
are classified for relevancy. The metrics used as the basis for the analyses presented
in this work are all relative values. These ratios may indicate a high relative impact
while their absolute impact on the overall runtime may be negligible. Therefore, rel-
ative and absolute impact needs to be taken into account. To honor user knowledge
about the code and allow for application dependencies no specific, absolute cut-off
threshold has been chosen here. Instead, a percentage slider based on a code region’s
runtime in relation to the total runtime determines the list of current suggestions,
which is updated when the percentage is changed. This allows the user to apply
different levels of detail to inspect and choose possible candidates for optimization.

Figure 5 shows an example of the KNL advisor plugin in use. On the right side the
panel lists the suggestions for the current percentage setting, chosen from the slider
in the toolbar above, as a list of call site and triggering metric. This list contains
suggestions concerning the three vectorization metrics presented in Sect.4.1. The
left and middle pane show relevant metric and call-path information, respectively,
for the currently selected incident. Additionally, the call tree also highlights every
other incident of the same metric in green. When selecting a different incident the
call tree and the metric selection will update their selections to the relevant view.

98 M. Schliitter et al.

]
H

Fig. 5 KNL Advisor plugin

Generating optimization candidates and presenting them to the user in this way
provides a intuitive starting point for the performance analysis. However, the user
should always keep in mind that the suggestions given by the KNL advisor are only
guidelines for optimization.

6 Topology Visualization

When examining the behavior of applications at large scale, it is important that the
user understands how the individual processes and threads are distributed across the
machine. A visual representation of the execution topology facilitates such under-
standing through an intuitive access to information about the execution context.
Furthermore, in the case of many-core architectures, such as Intel KNL, the distribu-
tion on a single many-core node is of particular interest to gain the best performance
for an application. The Score-P measurement infrastructure encodes this information
as Cartesian topologies and saves it as part of the measurement profile to be visually
explored using the Cube report browser.

Score-P Cartesian topologies map processes and threads to coordinates in multiple
dimensional regular grids. While Score-P can record Cartesian topologies of arbitrary
dimensions, they are folded onto three dimensions for visualization in Cube. Score-
P records meta information about the dimensions of the underlying topology and
coordinates for each location, however, it is currently limited to CPU threads and
processes excluding accelerators.

SCIPHI Score-P and Cube Extensions for Intel Phi 99

Currently, Score-P supports the generation of Cartesian topologies from four
sources: (1) MPI Cartesian communicators, (2) proprietary query interfaces, (3)
processes-by-threads matrices, and (4) user-defined topologies. Through the inter-
ceptionofthe MPT_Cart_create call, Score-P automatically uses the information
passed to the call to generate all necessary topology information and no further user
interaction is needed. Each call MPI_Cart_create will create a separate topol-
ogy. For platforms that provide an interface to supply coordinate information, such as
the IBM Blue Gene or the Futjitsu K Computer, Score-P creates a hardware topology,
mapping processes and threads with relation to the given dimensional information.
For hybrid applications, Score-P automatically generates a two-dimensional topol-
ogy with all processes in one dimension and their respective threads in the other
dimension. The relationships visualized are similar to those shown in the system tree
widget. However, the data is presented in a much more concise fashion, allowing
a better overview of larger configurations. Finally, Score-P provides a user API to
manually define Cartesian topologies. This allows users to record topology informa-
tion as needed and enables the generation of application-level topologies that do not
directly map to any other method above.

As topologies are regarded static through-out the execution of the application,
topologies require pinning of threads to cores. Since the coordinate mapping is only
done once per location Score-P will produce erroneous results if a thread migrates
during the run-time. To keep a consistent mapping between threads and hardware
locations, over-subscription isn’t supported and application threads should be evenly
spread between hardware threads.

An application run without explicit use of topologies in either MPI or user instru-
mentation will show the “Process x Threads” topology and, if supported, a hardware
topology. Users can enable and disabled each source of topology information through
the use of environment variables. This can become useful in cases where hardware
topologies are problematic or for example when MPI Cartesian topologies are cre-
ated in a loop iteration creating too many for practical use in the Cube result. As the
coordinate information is only acquired once per location the run-time overhead is
limited, however these meta data will increase the size of the measurement results
depending on the number of locations. Therefore, depending on scale and memory
requirements it can be helpful to reduce the memory overhead caused by topologies.

As part of the project, we investigated options to provide platform topology sup-
port for the KNL architecture. Since, the KNL architecture doesn’t supply a specific
interface to inquire this information directly during measurement, a more generic
approach has been implemented in Score-P. Using the third-party hwloc library [2],
Score-P now provides topology information for generic Linux systems and the KNL
architecture in particular. Hwloc gathers node-level information about the core distri-
bution and the memory hierarchy. It is an Open-MPI sub-project, mostly developed
by the TADaaM team at Inria. As it provides only node-level information and no
further information about the network structure is available, Score-P maps all nodes
onto a single dimension. A further limit of hwloc is that some levels of the collected
hierarchy, e.g., the L2 cache level of the KNL tiles, have only a logical numbering,
which precludes any implicit assumption about a direct mapping to the respective

100 M. Schliitter et al.

hardware element. This limits the recording of direct neighborhood relations of the
2D tile map of the KNL chip, as shown in the schematic of Fig. 1. Therefore, Score-P
maps it to a single dimension instead.

In general, topology data is stored in both Cube profiles as well as OTF2 trace
definitions. However, in the context of this project, we focused on the user benefits of
visualization in Cube, as the core of the extensions for SCIPHI are based on profile
data.

Figure 6 shows an example of a hardware topology for KNL obtained via hwloc
during a measurement of the NAS Parallel Benchmark [20]. The Cube topology
viewer plugin is available in the third pane of the Cube display, as an alternative
visualization option to system tree, boxplot and others. Every topology created dur-
ing run-time is represented by an additional tab in this pane. With the help of the
detachment mechanism for tabs, Cube allows the inspection of multiple topologies
simultaneously. Most of the plugin space is used for a three dimensional display
of the selected topology. The view can be manipulated in zoom and orientation
either through mouse interaction or the toolbar. The user can select locations and
query process and thread information on the selected coordinate. At the bottom of

File Display Plugins Help

Restore Setting = Save Settings || E|0D D H E B E BB xrot:[300 Zy-rot:(30 2

Absolute
B Metric tree
|50 0.000 Time (sec) =]
0 0.000 Execution
o 0.000 Non-Computation
o 0.000 Synchronization
u 0.041 MPI
7@ 43.003 OpenMP
® 0.100 Communication
® 0.746 Management
o 0.000 File /O
O 0.000 Overhead
O 0.000 MIPS, mips
® 0.001 Computation Imbalanc
® 0.008 Non-Computation Imbg
» 1.062e8 Visits (occ)
0 0.000 Minimum Inclusive Tim
® 3.600 Maximum Inclusive Tin
D 0 bytes_put (bytes)
o 0 bytes_get (bytes)
O 0 ALLOCATION_SIZE (bytes)
O 0 DEALLOCATION_SIZE (byte!
o 0 bytes_leaked (bytes)
® 2.883e7 bytes_sent (bytes)
® 2.883e7 bytes_received (bytt
® 1.580e12 PAPI_TOT_CYC (#)
® 5.449e11 PAPI TOT_INS (#)

[0.00 162.23(78.71%) 206.12]

- Absolute

B Call tree | EIFlat view
® 0.006 MAIN_
= 0.000 mpi_setup_
O 0.000 MPI_Bcast
= 0.013 env_setup_
= 0.000 zone_setup_
® 0.001 map_zones_
® 0.000 zone_starts_
® 0.000 set_constants_
2@ 17.145 initialize_
® 3.851 exact_rhs_
® 0.000 timer_clear_
= 0.968 exch_qbc_
= 0.010 adi_
® 3.869 compute_rhs_
O 43.006 x_sclve
2 44,112 y_solve_
= 0.028 z_solve_

o 0.000 !Somp implicit barrier @z

™ 0.588 add_
o 0.000 MPI_Barrier
® 0,000 timer_start_
® 0.000 timer_stop_
® 0,000 timer_read_
® 1.720 verify_
0 0.000 MPI_Reduce
® 0.000 print_results_
© 0.000 MPI_Finalize

o
0.00

46,85 (28.88%)

~| Peer distribution
_ 5| MProcess x Thread | HWLOC Topology [+]»

Fig. 6 Topology on a single node with one thread per core. Using one of four hardware threads per
core and with two cores for each of the 36 tiles in z-dimension

SCIPHI Score-P and Cube Extensions for Intel Phi 101

the display is a control interface that allows dimensions to be mapped to the three
dimensions of the display, which becomes a necessity once you have more than three
dimensions defined in your topology. There are two options to reduce the number
of dimensions: folding and slicing. With folding the user can choose which input
dimensions should be folded into one output dimension. In the case of slicing, three
dimensions are selected to be shown completely and for the remaining dimensions
single elements are chosen. Figure 6 shows a single node example, where the cluster
dimension doesn’t provide additional information and can be safely merged with the
tile level of the KNL architecture.

EEEEEEE R BRI R

Fig.7 View of the topology in detached state for an application run with a set of cluster nodes. On
the x axis the two cores of a tile are arrayed in sequence with each of their four hardware threads
grouped together. In combination with the 36 tiles in y direction each x, y plane represents a node.
The 16 levels in z direction show the 16 used nodes for this run

102 M. Schliitter et al.

That leads to an arrangement, where one (x,y) layer represents the two cores each
with four hardware threads of a tile while the z-dimension shows the 36 tiles of a
KNL node. Unused coordinates within topology are grayed out, as can be seen in
this example where only one thread per core has been used.

To highlight the effect of different dimensions and their layout on the topology
visualization, Fig. 7 shows the detached view of a second example of using topologies
on KNL. This second example shows a topology representation of an application
measurement run on multiple nodes. The application is a Monte Carlo simulation
called Casino, executed on 16 nodes of the CINECA Marconi cluster [14]. As the
measurement now spans multiple nodes, the off-node dimension cannot be folded
into the node layer without obscuring the node-level information. Figure 7 therefore
keeps this dimension separate in the z dimension, while retaining the node-level
dimensions mapped to the x and y dimension. That way one x,y plane represents one
KNL cluster node with a line along the x dimension containing one tile, showing the
hardware threads grouped by core.

As these two simple examples show, there is not a singular best way to arrange the
dimensions in three dimension. Its usefulness depends on run-time configurations
and user focus. Specifically in the case of the KNL architecture, the number of
relevant dimensions also depends on the chosen cluster and memory modes as they
influence the number of NUMA and sub-NUMA nodes. Furthermore, the examples
demonstrate that topologies are a powerful tool to visualize run-time distribution
of performance metrics, across large-scale measurements while having all locations
visible without needing to scroll through lists of locations. This enhances the user
ability to recognize patterns based on process placement and severity.

7 Conclusion

In this work we presented a set of extensions for Score-P that originated from a
cooperation with Intel® and were therefore focused on the KNL architecture. With
objective of improving the user experience and providing options for more in depth
intra-node analysis, we focused on the important topics of memory hierarchy and
vectorization. For the memory hierarchy, the explicit use of the two types of available
memory, DDR4 SDRAM and MCDRAM, were of particular interest. The extensions
highlight possibilities for tracking allocations and actual usage as a guideline to steer
the developer to an efficient use of the fast MCDRAM. The work on the vectorization
assistance using knowledge about the specific target architecture presents a deviation
from the standard Score-P metric definition. Instead of reporting just the severity of a
metric, thresholds are provided as deciding factor to suggest optimization candidates.

The architecture dependent use case created possibilities for future work in broad-
ening the focus of the presented extensions. The adaptations for multiple runs have a
wide range of possible use cases, however for generic and integrated use in the stan-
dard work flow the limiting ramifications have to be addressed, in particular ensuring
or at least checking the similarities between runs. Also, for a broader use of metrics

SCIPHI Score-P and Cube Extensions for Intel Phi 103

from different measurements the scaling of potential different timings have to be
considered, possible through the use of reference counters. Streamlining the work-
flow might also contain an automatic way of source to source loop instrumentation
to avoid the manual step of interaction.

Acknowledgements We would like to express our thanks to Intel Corporation, who supported this
work by the Intel Gift Grant “SCIPHI—Score-P and Cube extensions for Intel PHI”.

References

10.

12.

13.

. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J., Tallent,

N.R.: Hpctoolkit: tools for performance analysis of optimized parallel programs. Concurr.
Comput.: Pract. Exper., 22(6):685-701, April 2010 http://hpctoolkit.org

Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N., Goglin, B., Mercier, G., Thibault, S.,
Namyst, R.: hwloc: a generic framework for managing hardware affinities in hpc applications.
In IEEE, editor, PDP: The 18th Euromicro International Conference on Parallel, p. 2010.
Distributed and Network-Based Computing, Pisa, Italy, February (2010)

Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A portable programming interface
for performance evaluation on modern processors. Int. J. High Perform. Comput. Appl. 14(3),
189-204 (2000)

Eschweiler, D., Wagner, M., Geimer, M., Kniipfer, A., Nagel, W.E., Wolf, F.: Open trace
format 2—the next generation of scalable trace formats and support libraries. In: Proceedings
of the International Conference on Parallel Computing (ParCo), Ghent, Belgium, August 30—
September 2 2011, vol. 22 of Advances in Parallel Computing, pp. 481-490. IOS Press (2012)
Intel Corporation. Intel architecture instruction set extensions programming reference. https://
software.intel.com/isa-extensions

Intel® VTune™ amplifier. https:/software.intel.com/en-us/intel-vtune-amplifier-xe

Jurenz, M., Brendel, R., Kniipfer, A., Miiller, M., Nagel, W.E.: Memory allocation tracing with
VampirTrace, pp. 839-846. Springer, Berlin, Heidelberg (2007)

Kniipfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Miiller, M.S., Nagel,
W.E.: The Vampir performance analysis tool-set, pp. 139-155. Springer, Berlin, Heidelberg
(2008)

Kniipfer, A., Rossel, C., an Mey, D., Biersdorff, S., Diethelm, K., Eschweiler, D., Geimer, M.,
Gerndt, M., Lorenz, D., Malony, A.D., Nagel, W,E., Oleynik, Y., Philippen, P., Saviankou, P.,
Schmidl, D., Shende, S.S., Tschiiter, R., Wagner, M., Wesarg, B., Wolf, F.: Score-P—a joint
performance measurement run-time infrastructure for Periscope, Scalasca, TAU, and Vampir.
In: Proceedings of 5th Parallel Tools Workshop, 2011, Dresden, Germany, pp. 79-91. Springer,
Berlin, Heidelberg, September 2012

Liu, X., Mellor-Crummey, J.: A data-centric profiler for parallel programs. In: Proceedings
of the International Conference on High Performance Computing, Networking, Storage and
Analysis, SC 2013, pp. 28:1-28:12. ACM, New York, NY, USA (2013)

. Liu, X., Wu, B.: Scaanalyzer: a tool to identify memory scalability bottlenecks in parallel

programs. In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2015, pages 47:1-47:12. ACM, New York, NY, USA
(2015)

Lorenz, D., Bohme, D., Mohr, B., Strube, A., Szebenyi, Z.: Extending Scalasca’s analysis
features. In: Cheptsov, A., Brinkmann, S., Gracia, J., Resch, M.M., Nagel, W.E. (eds.) Tools
for High Performance Computing 2012, pp. 115-126. Springer, Berlin, Heidelberg (2013)
Mallinson, A.C., Beckingsale, D.A., Gaudin, W.P., Herdman, J.A., Levesque, J.M., Jarvis, S.A.:
Cloverleaf: preparing hydrodynamics codes for exascale. In: A New Vintage of Computing:
CUG2013. Cray User Group, Inc. (2013)

http://hpctoolkit.org
https://software.intel.com/isa-extensions
https://software.intel.com/isa-extensions
https://software.intel.com/en-us/intel-vtune-amplifier-xe

104

14.
15.

16.

17.

18.

19.

20.

21.

M. Schliitter et al.

Marconi, new CINECA tier-0 system. http://www.hpc.cineca.it/hardware/marconi

Reinders, J., Jeffers, J., Sodani, A.: Intel Xeon Phi Processor High Performance Programming
Knights, Landing edn. Morgan Kaufmann Publishers Inc., Boston, MA, USA (2016)
Saviankou, P., Knobloch, M., Visser, A., Mohr, B.: Cube v4 From performance report explorer
to performance analysis tool. Proced. Comput. Sci. 51, 1343-1352 (2015)

Schone, R., Tschiiter, R., Ilsche, T., Hackenberg, D.: The VampirTrace Plugin Counter Interface:
Introduction and Examples, pp. 501-511. Springer, Berlin, Heidelberg (2011)

Shende, S.S., Malony, A.D.: The tau parallel performance system. Int. J. High Perform. Comput.
Appl. 20(2), 287-311 (2006)

Treibig, J., Hager, G., Wellein, G.: Likwid: a lightweight performance-oriented tool suite for
x86 multicore environments. In: Proceedings of PSTI 2010, the First International Workshop
on Parallel Software Tools and Tool Infrastructures, San Diego CA (2010)

Van der Wijngaart, R.F,, Jin, H.: NAS Parallel Benchmarks, Multi-Zone versions. Technical
Report NAS-03-010, NASA Ames Research Center, Moffett Field, CA, USA, July 2003. http://
www.nas.nasa.gov/Software/NPB/

Wylie, B.J.N., Mohr, B., Wolf, F.: Holistic hardware counter performance analysis of parallel
programs. In: Proceedings of the Conference on Parallel Computing (ParCo), Malaga, Spain,
pp. 187-194, September 2005

http://www.hpc.cineca.it/hardware/marconi
http://www.nas.nasa.gov/Software/NPB/
http://www.nas.nasa.gov/Software/NPB/

Towards Elastic Resource Management)

Check for
updates

Isaias A. Comprés Ureiia and Michael Gerndt

Abstract A new paradigm for HPC Resource Management, called Elastic Comput-
ing, is under development at the Invasive Computing Transregional Collaborative
Research Center. An extension to MPI for programming elastic applications and a
resource manager were implemented. The resource manager is an extension of the
SLURM batch scheduler. Resource elasticity allows the resource manager to dic-
tate changes in the resource allocations of running applications based on scheduler
decisions. These resource allocation changes are decided by the scheduler based on
performance feedback from the applications. The collection of performance feed-
back from running applications poses unique challenges for the runtime system. In
this document, our current performance feedback system is presented.

1 Introduction

Distributed computing systems are expected to deliver performance that is commen-
surate to their available hardware resources. This is achieved by the optimization of
system-wide performance metrics. The optimization of these performance metrics is
a task usually delegated to schedulers. In the case of distributed systems, schedulers
take as input the jobs to be performed and the set of available compute resources.
They produce as output the job startup order and the resources where they will be
executed. These orders are referred to as schedules. These schedules affect the per-

Support for this work was provided by the Transregional Collaborative Research Centre 89: Invasive
Computing (InvasIC) [29].

I. A. Comprés Urefia (<) - M. Gerndt

Technical University of Munich (TUM), Rheinstrasse 5,
80803 Miinchen, Germany

e-mail: isaias.compres @tum.de

© Springer Nature Switzerland AG 2019 105
C. Niethammer et al. (eds.), Tools for High Performance Computing 2017,
https://doi.org/10.1007/978-3-030-11987-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11987-4_7&domain=pdf
mailto:isaias.compres@tum.de
https://doi.org/10.1007/978-3-030-11987-4_7

106 1. A. Comprés Urefia and M. Gerndt

formance of individual applications and whole systems, and therefore determine the
quality of schedulers.

The terms resource manager and scheduler are sometimes used interchangeably.
In reality, these are different software components that are often bundled together
due to their equal importance. Distributed systems need both a resource manager and
a scheduler in order to share their resources with multiple users in a fair and efficient
manner.

This document begins with an introduction to the general multiprocessor schedul-
ing, the batch scheduling and the runtime scheduling problems, to help illustrate the
need for performance feedback on resource-elastic systems. The additional features
of the resource manager that provide performance feedback to the scheduler are
described afterwards.

2 Theoretical Background on Multiprocessor Scheduling

The general multiprocessor scheduling problem is stated in an abstract manner in this
section. The problem statement for batch scheduling with static resource allocations is
presented after that, together with a short discussion on the taxonomy of schedulers
and how it is classified. This problem statement is then extended to fit the more
specific elastic scheduling problem addressed in this work. New requirements are
identified from the new problem statement.

2.1 Problem Statement

Multiprocessor scheduling is an optimization problem that can be stated verbally as
follows: given a set of tasks to be completed and a set of resources that can complete
them by some means, find an assignment of tasks to resources that optimizes a set
of objective functions. The tasks are bounded in time and may require collectively
more resources than are available simultaneously; therefore, the assignment of tasks
to resources may also require an order. Different orders can produce different outputs
of the objective functions.

We can define the problem of scheduling more rigorously. Let T be a set of tasks
t; where the subscripti € N identifies each task uniquely; this set may or may not be
finite. Similarly, let R be a set of m resources r; where the subscript {j € N | j < m}
identifies each resource uniquely. One or more resources in R can perform the tasks
in T in some manner. If 7(#;) € R is the maximum execution time and p(¢;) € N the
number of resources required to perform a task ¢;, then we can define multiprocessor
scheduling as the following optimization problem:

Towards Elastic Resource Management 107

giveninputs T ={t; | 1(t;) < 00 A p(t;) < m},
R={r;|j<m}
computea S ={f > 0;} (D

w
that optimizes Z O
k=0

The result of this optimization is a schedule S. The schedule is a set of mappings
from individual tasks ¢#; into specific subsets of resources p; of size p(t;), where g; C
R. Tasks where p(#;) > m are impossible to schedule and therefore not considered.

Objective functions typically produce single scalar values in R within the range
[0, c0). By optimizing (either minimizing or maximizing) the sum of the output
of each Oy objective function (e.g. idle node time), where {k € N | k < w}, the
quality of the produced schedule can be improved. Different objective functions
can evaluate the quality of full schedules S or individual mappings #; — o;. This
allows schedulers to optimize based on system-wide metrics, performance metrics
of individual applications, or both.

The sum of all required resources of the tasks in 7 may exceed the total number
of resources m in R:

Zp(t,-) >m 2)

In such a condition all tasks cannot be started simultaneously at the earliest time
of the schedule {§p € R | §o > 0}. Because of this, both a starting time and duration
need to be added as part of each mapping in the schedule when resource sharing is
not allowed. Each mapping then becomes a reservation of resources with a starting
time §; > &y and the duration of its task t(#;), in addition to its set of unique resources
0i. A schedule S then becomes:

S={ti = (0i, 8, t(t))} 3

This modification to S can be inserted in the initial optimization problem definition
(Eq. 1) to indicate that schedules need to be produced with these additional timing
specifications.

2.2 Computational Complexity

The theoretical complexity of the multiprocessor scheduling problem can be deter-
mined with the aid of complexity theory. The goal is to determine the asymptotic
complexity of the optimization problem based on its inputs. A bound to the number
of steps of possible algorithms, based on the number of steps required to reach a
solution, should be determined. Thankfully, this topic has been of great interest to
researchers and results from previous analyses [10, 12, 17, 19, 21] are available.

108 1. A. Comprés Urefia and M. Gerndt

The multiprocessor scheduling problem belongs to a family of problems that
have no known solutions of polynomial or lower complexity [6, 7, 18, 31]. It is
for this reason that current schedulers rely on approximation algorithms that are
based on heuristics. These algorithms settle for solutions that are feasible but not
necessarily optimal; the assumption is that in most cases adequate heuristics guide
the approximations so that produced schedules approach optimal results, based on a
set of objective functions.

2.3 Resource-Static Scheduling in Distributed Memory HPC
Systems

A scheduling problem for specific compute systems, in a more concrete way, can
be classified by several characteristics related to its set of tasks, its set of resources
and its method used to generate the output schedule. There have been several efforts
to create a taxonomy of scheduling problems [5, 13, 21, 22, 25]. The scheduling
problem in distributed HPC systems is clearly defined [8, 9, 16, 23, 26] for current
resource-static execution models. Current solutions consist generally of First-Come
First-Serve (FCFES) batch scheduling with static allocations and backfilling.

Current supercomputing systems are usually shared among several researchers
across multiple institutions. Individual tasks are submitted to these systems by its
users, in the form of batch job definitions. The arrival rate of these job definitions
can be modeled with the aid of queueing theory. Batch job definitions include their
number of resources required, their priority and their maximum execution time,
among several other aspects that may not be as important to schedulers. Batch job
definitions are entered in a queue. This queue represents the input task set 7' of the
optimization problem 1.

The resources of current supercomputing systems tend to be similar. In most
systems, the hardware on each node is identical. There may be cases where the nodes
have heterogeneity internally (e.g., in the form of accelerators). A node is abstracted
as a single resource in most cases. This means that in spite of the growing amount
of parallelism internally at each node, schedulers operate on full nodes, instead of
subsets of cores or even accelerators where available.

The operation of schedulers is currently divided in two steps: batch scheduling
and backfilling. The batch scheduling step scans a window of the job queue and
attempts to start as many jobs as possible based on their priority. When a job cannot
be started immediately, it may instead get a resource reservation in the future. Once
this first step is done, the scheduler proceeds to the backfilling step: it attempts to start
jobs that fit in the gaps of remaining idle resources. Jobs that are started during this
second step should not delay the start of higher priority jobs that have reservations.

The general strategy is illustrated in Fig. 1. It presents a scenario with four nodes,
a job queue of six jobs with a priority based order. In the illustration, a schedule
is computed where job 4 receives a reservation later than jobs 5 and 6 due to the

Towards Elastic Resource Management 109

Job Queue Schedule

I
4
*
6

. Time

Fig. 1 Possible schedule of a set of static jobs ordered by priority in a queue

availability of resources. In the same schedule, job 6 is scheduled early to minimize
idle nodes through a backfilling operation.

In summary, static batch scheduling with backfilling on current distributed systems
has the following task set, resource set and algorithm properties:

o Task set:

— Set properties:
Multiple users submit tasks
Tasks submitted randomly
Unbounded task capacity
Best effort First-In, First-Out (FIFO)
Tasks are removed on completion

— Task properties:
Set of one or more tasks as jobs
Jobs are time bounded
Jobs and tasks are not periodic
Fixed number of resources specified
Jobs receive exclusive access to resources
No Service Level Agreements (SLAS)

o Resource Set

— Symmetric Multiprocessing (SMP) nodes as resources
— Nodes have identical hardware (homogeneous)

— Nodes may have attached accelerators

— No quality of service (QoS) support

— Resources are finite and cannot be scaled on demand
— Resources are located in a single building

— Power and energy scaling features available

— No job or task migration support

— No fault tolerance support

110 1. A. Comprés Urefia and M. Gerndt

e Algorithm

— Nodes as the units of resources
— Job level scheduling (no task level scheduling)
— Objective functions for mainly system-wide performance metrics
— Two step resource-static scheduling
Batch scheduling with priority based FIFO
Backfilling to minimize idle nodes
— Scheduling without performance guarantees
— Scheduling without reactive adjustments
— Jobs cannot be preempted

2.4 Modified Scheduling Problem for Resource-Elastic
Execution

The scheduling problem described so far applies to cases where only static allocations
are possible. Static allocations mean that the resource reservation of a job stays
constant throughout its execution. The scheduling problem needs to be updated if
the resource allocation of a job can change during the runtime of its tasks; resources
may increase (expansion), decrease (reduction) or the unique nodes allocated to a
job may change while their total stays the same (migration).

The current scheduling problem, solved with batch scheduling and backfilling,
needs to be modified to include the added flexibility of resource-elastic execution.
Only the properties of the jobs in the task set need to be modified:

e Jobs have a range of feasible resource counts.
e Jobs have a time bound that is a function of its resources.

This modified scheduling problem remains very similar to the preexisting one due
to only these two differences. All other mentioned properties in the previous section
remain. Jobs still retain exclusive access to the resources on its resource allocations,
although some resources may be added or removed from this allocation at runtime.
Due to this, the time required for the job to complete becomes dependent of the
number of resources in time. In general, jobs will still provide a worst case time
bound as part of its description.

Although similar to the preexisting scheduling problem, these two differences in
the properties of jobs add new requirements to the algorithm of a potential scheduler.
In addition to the previous batch and backfilling steps, a scheduler for HPC systems
with resource-elastic execution capabilities must also:

1. Continuously monitor the performance of the tasks of running jobs.
2. Adjust the resource allocations of jobs based on their observed performance.

In the proposed design, the first activity is delegated to the resource management
infrastructure, while the second activity is delegated to to a scheduler that is under

Towards Elastic Resource Management 111

development. Most of the traditional batch-scheduling activities are still handled by
a more traditional scheduler. In the remainder of this document, the way the first
activity is carried out by the infrastructure will be described. The scheduler that is
currently under development will not be covered in this document.

3 Performance Monitoring Infrastructure

The performance of individual jobs is monitored by the infrastructure. The infras-
tructure is composed of the MPI library and the resource manager components.
Performance data is captured and a performance model is built. The performance
model is then used to drive scheduling decisions.

The collection of data is performed in a hierarchical manner. At the lower level,
each MPI library linked into each application process detects the structure of the
computation in the local process and collects performance data. This structure is
then reduced to a node-local representation by the SLURMD daemon at each node.
Finally, the scheduler performs a final reduction to create the individual performance
model of the distributed application. The set of models of all running applications
are used to drive scheduling decisions.

3.1 Process-Local Pattern Detection and Performance
Measurements

At the process-local view, the MPI library linked to the process performs pat-
tern detection and performance metrics evaluations. The pattern of computation is
detected before any performance metric is determined, since these metrics will be
attached to specific control flow locations only after they are detected. Process local
operations are kept to a minimum once a pattern is detected.

3.1.1 Pattern Detection

Since the pattern detection is intended to occur during the actual production run
of applications, the minimization of its performance impact is of great importance.
Because of this, the structure of computation is detected based on markers introduced
by the compilation wrappers provided by the MPI library (mpicc and mpi fc in this
case). There have been previous works that rely on backtracing the sequence of calls
in a program to determine unique locations during execution. These are then used as
identifiers for pattern detection [1-4, 11, 15], such as loops, in MPI applications. The
introduction of these markers at compilation time eliminates the overhead related to
backtracing, although the technique is limited to binaries generated within a single
software project.

112 1. A. Comprés Urefia and M. Gerndt

The markers are inserted by splitting the compilation of objects into the emission
of assembler and the final assembly step. Thankfully, most modern compilers have
support for these operations. In the current implementation, the compiler wrapper
works with Intel and GNU compilers. Versions 10.0 and later of the Intel compilers
were tested, while versions 4.9 and later were tested for the GNU compilers. Other
compilers were not tested, since those are the ones available in the SuperMUC system
where this work was evaluated.

The current wrapper based technique relies on the way these compilers generate
library calls in the emitted assembler. The actual API names of library calls are
preserved, when linking C based libraries. Fortunately, MPI is a pure C based library
and its calls can be easily identified with text processing in the intermediate assembler
of each target object of the compilation. Additionally, since the MPI standard requires
that any operation with the MPI_ prefix be provided only by the MPI library in
compliant programs, it is guaranteed that only MPI operations will be intercepted.
Additionally, the PMPI_ pattern can be selected to preserve support for any PMPI
based profilers and tools.

Once the MPI calls are identified in the assembler code, a unique ID is computed
and inserted before the MPI call through an operation available in the MPI library.
This operation is currently called MPIX_T_set_call_site_identifier,
and as its prefix MPIX_ T suggests, it is a non-standard addition to the MPI tools inter-
face. This tooling call sets the identifier for the device layer of the layered software
architecture inherited from MPICH. This operation sets an integer identifier that is
later read by the library at each individual MPI operation. This identifier establishes
the uniqueness of the call site without the need of backtracing.

The MPI library relies on these markers to detect the structure of the computation at
runtime. There have been several algorithms developed to detect patterns in sequences
[14, 20, 24, 28, 30]. A pattern detection algorithm, that was originally designed to
analyze programs from decompilation, fits well this pattern detection use case [32];
this algorithm is also used in other recent related works [2].

The pattern detection algorithm was implemented within the MPI library. In the
current implementation, the algorithm provides the following output information
to the runtime system, based on the current partial sequence of call site identifiers
provided to it as input:

1. The detected Control Flow Graph (CFG).

2. Each node of the CFG is annotated with its number of revisits.
3. Nodes that are the heads of unique loops are marked.

4. Nodes that are the tails of unique loops are marked.

5. Nodes that are reentry points from nested loops are marked.

The CFG update routine is called at relevant MPI operations with their unique
identifiers and types. There are different operation types for point-to-point, one-sided,
collectives, MPI-1O, etc. The MPI library has an operation that serializes its local
CFG to a shared memory segment, where it can then be read directly by the local
daemon. Unique blocks of shared memory are dedicated to each MPI rank in the
node.

Towards Elastic Resource Management 113

An example can be used to better explain the algorithm’s behavior. Listing 1
shows the log output of a single MPI process given the sequence of identifiers:

2063163163197 973163163197297

The detector can produce a text representation of its current CFG, in tabular
form, as logging output. Listing 2 shows the detected CFG that matches the previous
sequence. Each output row represents a node in the CFG. The first column is the
address in the local memory of the process. The second columns is the identifier
number. After that, the loop head flag (H), the loop body flag (B), the reentry counter
(Re) and the revisit counter (Rv) are provided. The final two columns provide the tail
data of loop heads, and the head data of loop body nodes. As seen in Listing 1, there
is also a time differential (TD) computed at each step. In the current implementation,
the time resolution of this differential is in nanoseconds. The time of creation is
set each time a new node is added to the CFG. Total differential times from head
nodes are accumulated on node revisits. The average distance in time from the head
node of a loop to any node in the body can therefore be computed by dividing the
accumulated differential by its total number of revisits.

0: root id: 2

1: id: 0; detected: 0; — NOT in a loop; (TD: 4638)
2: id: 6; detected: 0; —> NOT in a loop; (TD: 10243)
3: id: 3; detected: 0; —> NOT in a loop; (TD: 14440)
4: id: 1; detected: 0; —> NOT in a loop; (TD: 17938)
5: id: 6; detected: 1; —> head: 6; (TD: 22178)

6: id: 3; detected: 1; —> head: 6; (TD: 26174)

7: id: 1; detected: 1; —> head: 6; (TD: 30090)

8: id: 6; detected: 1; —> head: 6; (TD: 33756)

9: id: 3; detected: 1; — head: 6; (TD: 37407)

10: id: 1; detected: 1; —> head: 6; (TD: 41180)

11: id: 9; detected: 0; —> NOT in a loop; (TD: 44758)
12: id: 7; detected: 0; —> NOT in a loop; (TD: 48493)
13: id: 9; detected: 1; —> head: 9; (TD: 52336)

14: id: 7; detected: 1; —> head: 9; (TD: 56155)

15: id: 3; detected: 1; —> body re—entry; head: 6; (TD: 60054)
16: id: 1; detected: 1; —> head: 6; (TD: 63853)

17: id: 6; detected: 1; —> head: 6; (TD: 67418)

18: id: 3; detected: 1; —> head: 6; (TD: 70916)

19: id: 1; detected: 1; —> head: 6; (TD: 74361)

20: id: 6; detected: 1; —> head: 6; (TD: 77798)

21: id: 3; detected: 1; —> head: 6; (TD: 81239)

22: id: 1; detected: 1; —> head: 6; (TD: 84788)

23: id: 9; detected: 1; —> head re—entry; head: 9; (TD: 88710)
24: id: 7; detected: 1; —> head: 9; (TD: 92452)

25: id: 9; detected: 1; —> head: 9; (TD: 96131)

26: id: 7; detected: 1; —> head: 9; (TD: 99669)

Listing 7.1 Step by step updates based on the specified ID sequence

114

Figure2 presents a graphical depiction of the text based CFG output. Reverse
arrows on the left side of the figure represent loops, while the reverse arrow on the
right represents a reentry. The time taken at each MPI block is represented as its
vertical length. The time of the compute blocks can be computed by subtracting
the MPI times from the differential from preceding MPI operations. Their time is
also represented by their vertical length in the figure. In summary, all necessary data
is included so that such a graph can be computed by the local daemon from the

serialized CFG data.

I. A. Comprés Urefia and M. Gerndt

Current detected C

0x03; id:
0x2b; id:
0x31; id:
0x37; id:
0x3d; id:
0Ox4f; id:
0x55; id:

2;
0;
6;
3.
1

5

9;
7;

>
s
s
s

>

— O O = O O

s

0;

ontrol Flow Graph (CFG):

B: 0; Re: 0; Rv: 0; tail: ;
B: 0; Re: 0; Rv: 0; tail: ;
B: 0; Re: 0; Rv: 4; tail: 0x3d;
B: 1; Re: 1; Rv: 5; tail: 0x55;
B: 1; Re: 0; Rv: 5; tail: ;
B: 0; Re: 0; Rv: 3; tail: 0x55;
B: 1; Re: 0; Rv: 3; tail: ;

head:
head:
head:
head:
head:
head:
head:

0x31
0x31

0x4f

Listing 7.2 Example CFG detected based on the specified ID sequence

Process-Local Pattern
MPI 2

MPI O

Compute

Compute

Compute

MPI 1

MPI 9

MPI 7

Fig. 2 Process-local Control Flow Graph (CFG) representation

Towards Elastic Resource Management 115
3.1.2 Performance Measurements

The MPI library starts to record performance data once the heads and tails of one or
more loops are detected. Currently two performance metrics are recorded:

1. Total Loop Time (TLT)
2. Total MPI Time (TMT)

The TLT metric is the total time spent on the detected loop. The TLT metric can
be computed at each loop, including nested loops. The TLT metric is computed from
two real numbers. The first one is its creation time. This time is set for each node in
the CFG structure regardless of its type. The second one is the last visit time. The
MPI library does not perform any more operations for this metric. Instead, the data
is provided as it is to the local daemon once requested. The daemon is expected to
perform the subtraction of these values for the total accumulated time, and to divide
this value by the number of visits (revisits plus one) to get the average.

The second metric is the Total MPI Time (TMT). The TLT is inclusive of this
time. This time is the difference between the entry and the exit times of each MPI
call. In contrast to the TLT, these times are not stored in the CFG nodes where they
are computed; instead, this metric is aggregated in the loop head of the node. There is
no recursive search for the loop head in nested loops. The average can be computed
by dividing the aggregated times by the total number of visits to their loop heads.

3.2 Node-Local Reductions and Performance Data Updates

Once a loop is detected, the library switches to a mode of CFG verification and
performance data collection. As mentioned before, each process serializes its CFG
data on its own shared memory segment. Each process notifies its local daemon on
the following events:

e Loop detected
e Unexpected Loop exit
e Unexpected loop reentry

These events occur in the sequence presented in Listing 1: a loop detection occurs
in steps 5 and 13, in step 11 an unexpected loop exit occurs, and in step 15 an
unexpected loop reentry is encountered. All of these create changes in the CFG
and therefore need to be communicated to the local daemon. These events tend to
be more common during the initialization of MPI applications, and settle after a
while. Expected loop reentries in the body or loop heads do not generate any events,
since they do not trigger changes in the CFG. The library instead continues updating
performance data without notifying its local daemon, if there are no changes to the
CFG.

116 1. A. Comprés Urefia and M. Gerndt

The number of notifications to the local daemon is limited by the sampling timer
that currently defaults to one minute. This minimizes synchronization overheads,
especially during the initialization of an application. If one or more loop detection
or break events occur between timers, the local daemon is notified only once.

Performance data is updated separately from the CFG. These are updated period-
ically on each expiration of the sampling timer. These are only produced at the next
loop head reentry, and not in any arbitrary MPI operation. Each metric specifies the
identifier of its loop head, since more than one loop may be detected.

The local daemons do not read the performance data periodically. Instead, the
latest data is read on demand when requests from the scheduler are received. These
requests also have a field that optionally specifies a new value for the sampling timer.
This enables the scheduler to adjust the frequency of data collection per application,
based on previous performance data and trends.

3.2.1 Node-Local CFG Reduction

The daemon of a node keeps track of the notifications generated by each of its MPI
processes. When any of its local processes have notified that their CFGs have been
updated, it proceeds to read them and to perform a CFG reduction operation. The
reduction operation depends on the order and type of the operations in it.

The following rules are followed on the collection of CFGs to produce a reduction:

1. Nodes outside of loops are ignored.
2. Consecutive point-to-point or one-sided operations are collapsed.
3. Identical loops are combined into one with a process range.

The reduced CFG is then stored in the memory of the local daemon. It is populated
with performance data before it is sent to the scheduler on each request. If a request
is received from the scheduler, but the CFG data is still unavailable, the response to
the request has a field to indicates this.

An example set of four CFGs is presented in Fig. 3. All processes contain the loop
from 6 to 1, but miss the nested loop with head 9 and tail 7. Rule 1 ignores the nodes
2 and 0. MPI operations with identifier 6 and 3 are of the type point-to-point. This
means that they will be collapsed according to rule 2. All other operations are in
loops. Finally, given rule 3, the loop from 6 to 1 will be clustered for ranks O through
3, while the loop from 9 to 7 will be separated for only rank 0. The information on
its reentry is preserved. This indicates that it is nested within the common loop, but
only at rank 0. The result is presented in Fig. 4.

The three rules in the reduction algorithm can be justified. The first rule is justified
by the fact that code that occurs outside of loops is not relevant to elastic execution.
The second rule comes from the observation that MPI applications that use multiple
point-to-point and one-sided operations match logically across ranks. For example,
it is common to observe branching based on the rank number of the local process in
an MPI program to determine is the process will perform a send or a receive. These

Towards Elastic Resource Management 117

Process 0 Pattern Process 1 Pattern Process 2 Pattern Process 3 Pattern
MPI 2 MPI 2 MPI 2 MPI 2

Compute

Compute

MPI 0

Compute

MPI 0

Compute
MPI 0

MPI O

Compute

Compute

Compute Compute

MPI 6

MPI 6

MPI 6

Compute

Compute

Compute

MPI 3

MPI 3

MPI 3

Compute

Compute Compute

MPI 1

MPI 1 MPI 1

Compute
MPI 9

MPI7

Fig. 3 Set of four CFGs at a node before reduction

Reduced Pattern

Range: 0-3

Compute

MPI 7

Fig. 4 Reduced CFG from Fig.3

118 1. A. Comprés Urefia and M. Gerndt

sends and receives can be matched as a single block of communication in a distributed
view of the program, greatly simplifying the loop matching algorithm. This approach
does not cover all possible patterns of point-to-point communication, and needs to
be updated as the prototype matures. The final rule produces the reduction based on
similarity. It is essentially a form of compression.

3.2.2 Node-Local Performance Data Reductions

The sum of all the TLT and TMT metrics of each process in a loop are added to the
data of the reduced loop head nodes. In contrast, the mode (the value that occurs
the most) of the loop revisit counts are set. It is expected that with enough revisits
a small difference in the number of measurements will not affect the mean of the
metrics significantly.

3.3 Distributed Reductions and Performance Models

The scheduler generates requests for performance data that reach all the daemons of
an application. The requests and responses are routed through the SRUN binary of
the application, over the Tree Based Overlay Network (TBON) that it creates with
the nodes of its application. In the response to these request, each daemon sends the
reduced CFGs with the TLT and TMT metrics attached to each loop head. The final
distributed view of the CFG of the application is then generated from these at the
scheduler.

Matching loops are reduced by combining all of their TLT and TMT metrics. The
union of the process sets is set as the final range. The final distributed representation
of the earlier example is presented in Fig. 5.

Distributed Pattern
Range: 0-127

Compute

Fig. 5 Final reduced CFG at the scheduler from Fig. 4

Towards Elastic Resource Management 119

Finally, the average loop time and MPI time metrics are computed based on
the number of iterations of the loop heads and the TLT and TMT metrics provided.
Additional memory is dedicated to store the mean, variance, minimum and maximum
values of these final metrics. Finally, a vector of their recent values is stored, to detect
performance trends.

3.3.1 SPMD-Phase Performance Model

Currently only one type of performance model has been implemented: the SPMD-
Phase model. When the system detects one or more distributed loops, it creates an
SPMD-Phase performance model instance for the application. Applications that do
not fit this model (i.e., that have no distributed loop) are currently ignored. SPMD-
Phase models consist of a set of distributed loops and their performance metadata. In
general, models are used by the scheduling heuristic to try to ensure that application
phases remain within their efficient range of resources.

4 Elastic Performance Feedback Overheads

A selection of resource manager operations is evaluated in this section. This selection
contains all operations that impact the performance of MPI operations during normal
computations. The operations that were not included are very numerous, but are either
performed locally by one of the resource manager components, or do not impact the
performance of preexisting MPI processes thanks to the latency hiding features of
the design.

The evaluation has been performed in the SuperMUC [27] petascale system. This
supercomputer is managed by the Leibniz Supercomputing Center (LRZ) and is
located in Garching, Germany. The resources of this HPC system are managed by
an IBM Load Leveler resource manager.

There were some challenges encountered when testing the custom resource man-
ager and communication library. As may be expected, it is not possible to replace
the preexisting resource manager. The new resource manager and MPI library were
setup dynamically within a job. In that sense, the SLURM resource manager was
nested inside of a Load Leveler job.

The SuperMUC system has multiple types of nodes divided in two sets: Phase 1
with Sandy Bridge CPUs, and Phase 2 with Haswell CPUs. Phase 1 nodes are based
on a dual socket board with two Sandy Bridge-EP, Xeon E5-2680 CPUs. Each of
these CPUs has 8 physical cores each, for a total of 16 per node, running at 2.7 GHz.
Phase 2 nodes are also based on a dual socket board but with two Haswell-EP, Xeon
E5-2697 CPUs. These have a higher CPU count of 14 physical cores each, for a total
of 28 per node, running at lower 2.6 GHz.

120 1. A. Comprés Urefia and M. Gerndt

All components (SLURM, MPICH and test applications) have been compiled
with the GCC version 6 module provided in the SuperMUC system. The SuperMUC
interconnect is based on Mellanox Infiniband network interfaces.

4.1 Tree Based Overlay Network (TBON) Latency

Resource adaptation instructions are set by the scheduler for each application when
necessary. These adaptation instructions are probed by MPI applications periodically
at locations where they can perform a redistribution of their domain. The commu-
nication between SRUN and the SLURMD daemons that manage the execution of an
MPI application is important for the probe operation when the adaptation flag is set
to true. The algorithm for probing has two sides: the side at each MPI process and
the side at each SLURMD daemon. When the adaptation flag is set to true, multiple
synchronization operations between the SRUN program and each daemon take place.
These synchronization operations are performed over the Tree Based Overlay Net-
work (TBON) that connects SRUN to each SLURMD daemon. Because of this, the
latency of messages over the TBON can impact the overhead of MPI processes when
they are required to adapt.

Figure 6 presents the latency of a single message and its confirmation from each
participating node. In the figure, its scalability based on process count is presented.
This means that the results for the Sandy Bridge and Haswell nodes will differ mainly
due to the different core counts in the nodes. In the case of Haswell, only 20 nodes are
needed to run 512 processes, while 32 nodes are needed in the Sandy Bridge nodes.
As expected of a TBON network, the latency of messages scales logarithmically.

Sandy Bridge —@—
Haswell -=-x--4

®
/ﬂ

0.1

Time (seconds)

16 32 64 128 256 512
Number of MPI processes

0.01

Fig. 6 Latency of TBON messages from SRUN to daemons

Towards Elastic Resource Management 121

4.2 Control Flow Graph (CFG) Detection Overhead

In this section, the overhead of the set of operations that perform Control Flow Graph
(CFG) detection is measured. Some of these operations impact the performance of
MPI processes directly, while some can have a small impact since they are performed
in the core where the SLURMD daemon of the node runs. These operations are:
insertion, reduction, packing, unpacking and collapse.

The reduction, packing, unpacking and collapse operations are not as significant
to the performance of MPI application processes due to their infrequent executions,
as mentioned. That leaves the insertion operation as the only one that can impact the
performance of application processes. The measurements are presented based on their
scalability with respect to the size of the CFG graph, the total number of processes
at each node, and finally the number of iterations of the loop in the application.

4.2.1 Scaling with Control Flow Graph (CFG) Size

It is important to understand how the detection overheads scale with increased CFG
complexity. Figure 7 presents the scalability of all of the operations for CFG sizes
between 8 and 1024 entries. Results for Phase 1 and Phase 2 nodes are included side
by side for comparison. The sizes of CFGs are typically less than 100 entries, so the
wide range of up to 1024 entries is pessimistic.

As mentioned before, the insertion latency is the most significant overhead. Unfor-
tunately, the insertion latency scales exponentially with the number of entries in the
CFQG. Fortunately, although with bad scalability, the actual cost of the operation is
small. A typical MPI operation runs for multiple milliseconds, while the insertion
overhead is of around 700 nanoseconds for a 8 entry CFG, up to 10 s for the extreme
case of 1024 CFG entries. For the typical case of 128 CFG entries, the overhead of
insertion is less than 2 s.

The CFG reduction operation scales exponentially with the number of entries
in the CFG. The overhead of 5s for 8 entries up to about 500 s in the extreme
1024 entry case are acceptable, given the infrequency of this operation. The packing,
unpacking and collapse operations scale exponentially, but their actual costs is much
lower than the reduction operation, since these are performed in parallel with the
participation of each MPI process. Their maximum cost of 100 ps at the extreme
case of 1024 entries is also acceptable given the infrequency of these operations.

4.2.2 Scaling with Process Counts

In addition to scaling with the size of the CFG, it is also important to evaluate how
the overheads scale with increasing numbers of processes at each node. These are
intra-node operations, so only process counts that are expected to be possible, without
oversubscription, in near future HPC nodes are considered: from 2 to 128 processes.

122 1. A. Comprés Urefia and M. Gerndt

100000 100000
F Insertion Latency —— insertion Latency —— 1
g
c
S 10000 | sl ol 10000 by
] Bt pd g
7 i | T 3
<} R et T 2
S 1000 I | 1000 S
x 1~ L
o] I/
T 100¢ 4 4100 8
- 3
Q.
n
10 L L L L I L L L L L L L L L L L 10
T T T - - T T n T T T T : - - 1e+07
1e+06 §
(2]
g 4 1e+06
D
8 100000 | z
[I =}
Q
2 | 100000 2
g =)
£ 10000 3
= £ I 10000 3
9 e o
c ¥ E T @
@ r CFG Reduction, 2 processes —+— H CFG Reduction, 2 processes —+— o)
< 1000 | CFG Reduction, 4 processes —— _| CFG Reduction, 4 processes —+— Q
B F CFG Reduction, 8 processes —+— CFG Reduction, 8 processes —— - 1000 g
CFG Reduction, 16 processes CFG Reduction, 16 processes a
CFG Reduction, 32 processes CFG Reduction, 32 processes &
8 CFG Reduction, 64 processes CFG Reduction, 64 processes ~
CFG Reduction, 128 processes CFG Reduction, 128 processes
100 L L L h n L i L L I L 1 L I i L 100
1e+06 ¢ 7 1e+06
F acking —— Packing —— 1
- F Unpacking —+— Unpacking —+— E
% Collapse Collapse
c
§ 100000 | & 100000 &
ko + = @
%) e 5 =X f =}
] \ 1 2
S 10000 % / 10000 S
= B T I L
3 T e 3
2 / /L(- 3 i %
S] 3
2 1000 1] 1 1000 9
1 (=]
3 i S
Q.
t &
100 L L L ‘ I n

: : . : : J 100
8 16 32 64 128 256 512 10248 16 32 64 128 256 512 1024
Loop length in CFG entries (Sandy Bridge) Loop length in CFG entries (Haswell)

Fig. 7 CFG size performance scaling. Results for SuperMUC Phase 1 (Sandy Bridge, left) and
Phase 2 (Haswell, right) are presented

Figure 8 presents scalability data for the detection operations based on process
counts. Results for the larger CFG sizes 256, 512 and 1024 are presented for Phase
1 (left) and Phase 2 (right) nodes. As can be seen, the overheads for the insertion,
packing, unpacking and collapse operations do not depend on the process counts,
while the reduction operation does. Their latencies vary between a few hundred
nanoseconds to a few hundred microseconds.

Not scaling with the number of processes is desirable, since it means that an
arbitrary number of processes can be added at each node and these overheads will
not increase. This is specially important in the case of the insertion latency, since
this overhead is added to each MPI operation while the CFG detection mechanism
is enabled. Once the CFG logic switches to verification, this overhead is removed.
The packing, unpacking and collapse overheads are not as impactful to application
performance, as mentioned before, since these occur infrequently.

Towards Elastic Resource Management 123

100000 — e 100000
—_ 3 Insertion Latency, CFG size 256 —+— 10 Insertion Latency, CFG size 256 —+— S|
[} [Insertion Latency, CFG size 512 —+— 1| Insertion Latency, CFG size 512 —+— .|
'8 Insertion Latency, CFG size 1024 —+— 1 Insertion Latency, CFG size 1024 —+— 1
3
$ b
o 10000 10000 g
C
@ o ‘2
£
3
3 5]
c >
S 1000 1000
©
. g
=
o3
°o
100 L 1 100
—_ 1e+07 CFG Reduction, CFG size 256 +——+— ,i CFG Reduction, CFG size 256 ——+— Vi 1e+07
) CFG Reduction, GFG size 512 —+— 1| CFG Reduction, CFG size 512 —+— i
TC’ CFG Reduction, CFG size 1024 +——+— 1 CFG Reduction, CFG size 1024 +——+—
1]
g 1e+06 o .4 10406 [
@ i =~
g e g
g e e P
< 100000 — 3 4 100000 —
> g S
9 S S L
c S f— e =3
[9) R I}
w - @
—1 10000 10000 &
o
=
o
o
1000 L 1 1000
1e+06 1e+06
(2}
2
Q 100000 % 100000
1 e S S S H o I
@ g i o
8 ¥ ¥ ¥ ¥ % T
R
S 10000 10000 3
<
£
) 3
c 1000 Packing, CFG size 256 1 | Packing, GFG size 256 ——— 7 1000 3
Qo 3 Packing, CFG size 512 —+— 1 | Packing, CFG size 512 —+— 1 8
© Packing, CFG size 1024 +——+— Packing, CFG size 1024 +—+— o
- [Unpacking, CFG size 256 »--x--+ 110 Unpacking, CFG size 256 *--x--4 1 3
100+ Unpacking, CFG size 512 4 Unpacking, CFG size 512 4100 o
Unpacking, CFG size 1024 Unpacking, CFG size 1024 =1
§ Collapse, CFG size 256 : 1 Collapse, CFG size 256 1 o
[Collapse, CFG size 512 - % N Collapse, CFG size 512 | »
10u X Cgl\apse, CEG size 102‘4 - X X X X Cgllapse, CEG size 102‘4 - X X 10 ~
2 4 8 16 32 64 128 2 4 8 16 32 64 128

Process count (Sandy Bridge) Process count (Haswell)

Fig. 8 Process count performance scaling. Results for SuperMUC Phase 1 (Sandy Bridge, left)
and Phase 2 (Haswell, right) are presented

The situation for the reduction operation is not so fortunate, where its overhead
increases with the number of processes per node of an application. As measured
before, the overhead of this operation also increases with larger CFG sizes. Because
of this, this operation has the worst scaling properties of the measurement infrastruc-
ture. Fortunately, these operations do not occur frequently and the absolute latency
numbers it reaches are still not large.

4.3 MPI Performance Impact of the CFG Detection Overhead

Additional measurements were performed to evaluate the impact of these operations
in actual MPI operations. MPI operations can run from a few microseconds to mul-
tiple seconds, depending on the type of operation, the number of processes and the
size of the buffers.

124 1. A. Comprés Urefia and M. Gerndt

1e+07 1e+07
o) x7 ’
e 1e+06 g ﬁ 1e+06
3 X e 5
& 100000 5 s 100000 @
8 - o o " 3
- K 7 st ot £
8 10000 w5 B 10000 =
= - = S 8
[} - —
€ 1000 e - T 1000 @
‘a No CFG detection 16 Processes —+— No CFG detection 16 Processes —+— g
- [CFG detection enabled 16 Processes —+— CFG detection enabled 16 Processes —+— o
100 F: CFG verification enabled 16 Processes 4 E CFG verification enabled 16 Processes 4 100 =1
I No CFG detection 1024 Processes ---X--- No CFG detection 1024 Processes ---X--- o
CFG detection enabled 1024 Processes ---X--- CFG detection enabled 1024 Processes ---X--- w
1 0 I CFG vevmc‘auon enabled 1024 P‘mcesses L CFG vermca‘mn enabled 1024 F'v‘acssses 10 ~
1e+07
e - e
—
(2} >
° 1e+06 :
o] e 1e+06 -
o 3 IR e 7 o
@ @
2 =
e 5]
& 100000 100000 f\
£ S
3 S
e ,, o
/ 2
[0
= 10000 g s 7 10000
4 O]
e
1 000 L L L L L I 1000
16 256 4096 65536 16 256 4096 65536
Buffer size in bytes (Sandy Bridge) Buffer size in bytes (Haswell)

Fig.9 MPI_SEND (top) and MPI_BCAST (bottom) performance examples with detection enabled
and disabled on a 32 entry CFG loop. Results for SuperMUC Phase 1 (Sandy Bridge, left) and Phase
2 (Haswell, right) are presented

In Fig. 9, results for the MPT_ SEND and MPT_BCAST operations are presented.
These two operations were selected since they have the lowest latencies among the
set of point-to-point and collective operations, respectively. The figure presents the
latency for the MPT_ SEND operation at the top and the MPTI_BCAST operation at
the bottom. Results for Phase 1 (left) and Phase 2 (right) nodes are presented side
by side for comparison. Results for 16 and 1024 processes are presented with buffer
sizes from 16 bytes up to a megabyte. The size of the CFG was set to 32 for these
tests. Most applications and benchmarks that have been evaluated generate less CFG
entries by the time they terminate.

As can be seen in the plots, the performance of MPI_SEND is only impacted
significantly for message sizes of up to 4096 bytes, but only at lower process counts.
For the case of 1024 processes, the overhead of the CFG detection algorithm is
insignificant even for very small messages of 16 bytes. Additionally, the overhead of
detection is not measurable on verification mode. This means that its overhead will
only be observed when the detection algorithm has not encountered a loop, or when
it exits a loop and resumes its detection.

A smaller performance impact can be observed for the MPI_ BCAST operation. As
mentioned before, the latency of this operation is the lowest among MPI collectives;
therefore, the impact of CFG detection can be expected to be almost negligible when
collectives are being used. Although the detection overhead is lower in terms of
absolute latency, the percentage impact is higher in the case of Phase 2 nodes.

Towards Elastic Resource Management 125

5 Conclusion

A CFG detection algorithm was implemented without the need of backtracing, in
the MPI library. These CFGs are detected at each process and shared with the local
resource manager daemons at compute nodes. These are eventually transferred to
the scheduler running at a remote node through the TBON of the nodes allocated
to each application. The overhead was shown to depend on the length of the CFG
of applications. Because most applications produce CFGs that are in the order of
hundreds of elements and the detection does not rely on backtracing, the overhead of
detection was kept in the order of nanoseconds in most cases. The library switches
to a verification only mechanism when a partial CFG remains stable. The overhead
of verification cannot be measured even on single byte MPI messages with latencies
in the order of microseconds.

A performance model can be produced with the data to drive scheduling deci-
sions. It is expected that the integration of programming models and resource man-
agers will increase in importance as exascale levels of performance are reached in
HPC systems. Programming models that support resource-elastic execution and bring
computational and energy efficiency benefits, while at the same time allowing for
fault-tolerance, are expected to increase in importance in the near future. Performance
feedback mechanisms, such as the one presented here, will allow future schedulers to
make quality resource-scaling decisions to further improve system-wide efficiency
metrics in HPC systems.

References

1. Aguilar, X., Fiirlinger, K., Laure, E.: MPI trace compression using event flow graphs. In:
Euro-Par 2014 Parallel Processing: 20th International Conference, Porto, Portugal, August
25-29, 2014. Proceedings, pp. 1-12. Springer International Publishing (2014). https://doi.org/
10.1007/978-3-319-09873-91

2. Aguilar, X., Fiirlinger, K., Laure, E.: Automatic on-line detection of MPI application structure
with event flow graphs. In: Euro-Par 2015: Parallel Processing: 21st International Conference
on Parallel and Distributed Computing, Vienna, Austria, August 24-28, 2015, Proceedings, pp.
70-81. Springer, Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48096-06

3. Aguilar, X., Fiirlinger, K., Laure, E.: Visual MPI performance analysis using event flow graphs.
Proced. Comput. Sci. 51, 1353 — 1362 (2015). https://doi.org/10.1016/j.procs.2015.05.322.
URL http://www.sciencedirect.com/science/article/pii/S1877050915011308

4. Aguilar, X., Fiirlinger, K., Laure, E.: Event flow graphs for MPI performance monitoring and
analysis. In: Tools for High Performance Computing 2015: Proceedings of the 9th International
Workshop on Parallel Tools for High Performance Computing, September 2015, Dresden,
Germany, pp. 103-115. Springer International Publishing, Cham (2016). https://doi.org/10.
1007/978-3-319-39589-08

5. Casavant, T.L., Kuhl, J.G.: A taxonomy of scheduling in general-purpose distributed computing
systems. IEEE Trans. Softw. Eng. 14(2), 141-154 (1988). https://doi.org/10.1109/32.4634

6. Coffman, E.G.,J., Garey, M.R., Johnson, D.S.: An application of bin-packing to multiprocessor
scheduling. SIAM J. Comput. 7(1), 1-17 (1978). https://doi.org/10.1137/0207001

https://doi.org/10.1007/978-3-319-09873-91
https://doi.org/10.1007/978-3-319-09873-91
https://doi.org/10.1007/978-3-662-48096-06
https://doi.org/10.1016/j.procs.2015.05.322
http://www.sciencedirect.com/science/article/pii/S1877050915011308
https://doi.org/10.1007/978-3-319-39589-08
https://doi.org/10.1007/978-3-319-39589-08
https://doi.org/10.1109/32.4634
https://doi.org/10.1137/0207001

126 1. A. Comprés Urefia and M. Gerndt

7. Davis, R.I., Burns, A.: A survey of hard real-time scheduling for multiprocessor systems. ACM
Comput. Surv. 43(4), 35:1-35:44 (2011). https://doi.org/10.1145/1978802.1978814

8. Etsion, Y., Tsafrir, D.: A short survey of commercial cluster batch schedulers. Sch. Comput.
Sci. Eng. Hebr. Univ. Jerus. 44221, 2005-13 (2005)

9. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U.: Parallel job scheduling—a status report.
In: Proceedings of the 10th International Conference on Job Scheduling Strategies for Parallel
Processing, JSSPP 2004, pp. 1-16. Springer, Berlin, Heidelberg (2005). https://doi.org/10.
1007/114075221

10. Fortnow, L.: The status of the P versus NP problem. Commun. ACM 52(9), 78-86 (2009).
https://doi.org/10.1145/1562164.1562186

11. Fiirlinger, K., Skinner, D.: Capturing and visualizing event flow graphs of MPI applications.
In: Euro-Par 2009—Parallel Processing Workshops: HPPC, HeteroPar, PROPER, ROIA, UNI-
CORE, VHPC, Delft, The Netherlands, August 25-28, 2009, Revised Selected Papers, pp.
218-227. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14122-526

12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York, NY, USA (1990)

13. Graham, R., Lawler, E., Lenstra, J., Kan, A.: Optimization and approximation in deterministic
sequencing and scheduling: a survey. In: Proceedings of the Advanced Research Institute on
Discrete Optimization and Systems Applications, Annals of Discrete Mathematics, vol. 5, pp.
287-326. Elsevier (1979). https://doi.org/10.1016/S0167-5060(08)70356-X

14. Havlak, P.: Nesting of reducible and irreducible loops. ACM Trans. Program. Lang. Syst. 19(4),
557-567 (1997). https://doi.org/10.1145/262004.262005

15. Toannou, N., Kauschke, M., Gries, M., Cintra, M.: Phase-based application-driven hierarchical
power management on the single-chip cloud computer. In: 2011 International Conference on
Parallel Architectures and Compilation Techniques, pp. 131-142 (2011). https://doi.org/10.
1109/PACT.2011.19

16. Jackson, D.B., Snell, Q., Clement, M.J.: Core algorithms of the Maui scheduler. In: Revised
Papers from the 7th International Workshop on Job Scheduling Strategies for Parallel Process-
ing, JSSPP 2001, pp. 87-102. Springer, London, UK (2001). http://dl.acm.org/citation.cfm?
1d=646382.689682

17. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Com-
putations: Proceedings of a symposium on the Complexity of Computer Computations, pp.
85-103. Springer US, Boston, MA (1972). https://doi.org/10.1007/978-1-4684-2001-29

18. Khan, A.A., Mccreary, C.L., Jones, M.S.: A comparison of multiprocessor scheduling heuris-
tics. In: Internatonal Conference on Parallel Processing Vol. 2, vol. 2, pp. 243-250 (1994).
https://doi.org/10.1109/ICPP.1994.19

19. Lawler, E.L., Lenstra, J.K., Kan, A.H.R., Shmoys, D.B.: Chapter 9 sequencing and scheduling:
Algorithms and complexity. In: Logistics of Production and Inventory, Handbooks in Opera-
tions Research and Management Science, vol. 4, pp. 445 — 522. Elsevier (1993). https://doi.
org/10.1016/50927-0507(05)80189-6

20. Lee, 1., Iliopoulos, C.S., Park, K.: Linear time algorithm for the longest common repeat problem.
J. Discret. Algorithms 5(2), 243-249 (2007). https://doi.org/10.1016/j.jda.2006.03.019. 2004
Symposium on String Processing and Information Retrieval

21. Lenstra, J., Kan, A.R., Brucker, P.: Complexity of machine scheduling problems. In: Studies in
Integer Programming, Annals of Discrete Mathematics, vol. 1, pp. 343-362. Elsevier (1977).
https://doi.org/10.1016/S0167-5060(08)70743-X

22. Lopes, R.V., Menascé, D.: A taxonomy of job scheduling on distributed computing systems.
IEEE Trans. Parallel Distrib. Syst. 27(12), 3412-3428 (2016). https://doi.org/10.1109/TPDS.
2016.2537821

23. Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user runtime esti-
mates in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel Distrib. Syst. 12(6),
529-543 (2001). https://doi.org/10.1109/71.932708

24. Ramalingam, G.: Identifying loops in almost linear time. ACM Trans. Program. Lang. Syst.
21(2), 175-188 (1999). https://doi.org/10.1145/316686.316687

https://doi.org/10.1145/1978802.1978814
https://doi.org/10.1007/114075221
https://doi.org/10.1007/114075221
https://doi.org/10.1145/1562164.1562186
https://doi.org/10.1007/978-3-642-14122-526
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1145/262004.262005
https://doi.org/10.1109/PACT.2011.19
https://doi.org/10.1109/PACT.2011.19
http://dl.acm.org/citation.cfm?id=646382.689682
http://dl.acm.org/citation.cfm?id=646382.689682
https://doi.org/10.1007/978-1-4684-2001-29
https://doi.org/10.1109/ICPP.1994.19
https://doi.org/10.1016/S0927-0507(05)80189-6
https://doi.org/10.1016/S0927-0507(05)80189-6
https://doi.org/10.1016/j.jda.2006.03.019
https://doi.org/10.1016/S0167-5060(08)70743-X
https://doi.org/10.1109/TPDS.2016.2537821
https://doi.org/10.1109/TPDS.2016.2537821
https://doi.org/10.1109/71.932708
https://doi.org/10.1145/316686.316687

Towards Elastic Resource Management 127

25.

26.

217.

28.

29.

30.

31.

32.

Rotithor, H.G.: Taxonomy of dynamic task scheduling schemes in distributed computing sys-
tems. IEE Proc. Comput. Digital Techn. 141(1), 1-10 (1994). https://doi.org/10.1049/ip-cdt:
19949630

Srinivasan, S., Kettimuthu, R., Subramani, V., Sadayappan, P.: Selective reservation strategies
for backfill job scheduling. In: Job Scheduling Strategies for Parallel Processing: 8th Interna-
tional Workshop, JSSPP 2002 Edinburgh, Scotland, UK, July 24, 2002 Revised Papers, pp.
55-71. Springer, Berlin, Heidelberg (2002). https://doi.org/10.1007/3-540-36180-44
SuperMUC Petascale System (2017). https://www.lrz.de/services/compute/supermuc/.
[Online]

Tarjan, R.: Testing flow graph reducibility. In: Proceedings of the Fifth Annual ACM Sympo-
sium on Theory of Computing, STOC 1973, pp. 96-107. ACM, New York, NY, USA (1973).
https://doi.org/10.1145/800125.804040

Transregional Research Center InvasIC (2017). http://www.invasic.de. [Online]

Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249-260 (1995).
10.1007/BF01206331

Ullman, J.: Np-complete scheduling problems. J. Comput. Syst. Sci. 10(3), 384-393 (1975).
https://doi.org/10.1016/S0022-0000(75)80008-0

Wei, T., Mao, J., Zou, W., Chen, Y.: A new algorithm for identifying loops in decompilation.
In: Static Analysis: 14th International Symposium, SAS 2007, Kongens Lyngby, Denmark,
August 22-24, 2007. Proceedings, pp. 170-183. Springer, Berlin, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-74061-211

https://doi.org/10.1049/ip-cdt:19949630
https://doi.org/10.1049/ip-cdt:19949630
https://doi.org/10.1007/3-540-36180-44
https://www.lrz.de/services/compute/supermuc/
https://doi.org/10.1145/800125.804040
http://www.invasic.de
https://doi.org/10.1016/S0022-0000(75)80008-0
https://doi.org/10.1007/978-3-540-74061-211
https://doi.org/10.1007/978-3-540-74061-211

Online Performance Analysis)
with the Vampir Tool Set L

Matthias Weber, Johannes Ziegenbalg and Bert Wesarg

Abstract Today, performance analysis of parallel applications is mandatory to fully
exploit the capabilities of modern HPC systems. Many performance analysis tools
are available to support users in this challenging task. All tools usually employ one
of two analysis methodologies. The majority of analysis tools, such as HPCToolkit
or Vampir, follow a post-mortem analysis approach. In this approach, a measurement
infrastructure records performance data during the application execution and flushes
its data to the file system. The tools perform subsequent analysis steps after the appli-
cation execution by using the stored performance data. Post-mortem analysis comes
with the disadvantage that possibly large data volumes need to be handled by the
I/O subsystem of the machine. Tools following an online analysis approach mitigate
this disadvantage by avoiding the I/O subsystem. The measurement infrastructure of
these tools uses the network to directly transfer the recorded performance data to the
analysis components of the tool. This approach, however, comes with the limitation
that the complete analysis occurs at application runtime. In this work we present
a prototype implementation of Vampir capable of performing online analysis. We
discuss advantages and disadvantages of both approaches and draw conclusions for
designing an online performance analysis tool.

1 Introduction

Performance analysis and optimization has become essential for efficient usage of
HPC resources. However, due to rising complexity in HPC software and hardware
this is no trivial task. Often, the detection of performance bottlenecks in parallel
applications requires performance analysis tools. As many types of performance
problems only arise at larger scales, performance tools need to scale along with
parallel applications [3, 8, 12]. This required tool scalability poses performance

M. Weber () - J. Ziegenbalg - B. Wesarg
TU Dresden ZIH, Chemnitzer Str. 50, 01187 Dresden, Germany
e-mail: matthias.weber @tu-dresden.de

J. Ziegenbalg
e-mail: johannes.ziegenbalg @tu-dresden.de

© Springer Nature Switzerland AG 2019 129
C. Niethammer et al. (eds.), Tools for High Performance Computing 2017,
https://doi.org/10.1007/978-3-030-11987-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11987-4_8&domain=pdf
mailto:matthias.weber@tu-dresden.de
mailto:johannes.ziegenbalg@tu-dresden.de
https://doi.org/10.1007/978-3-030-11987-4_8

130 M. Weber et al.

challenges for the analysis tools themselves. One severe challenge with respect to
scalability are the required I/O operations of performance data by the analysis tool.
This is especially true in case of tracing tools, that record and retain very fine-grain
application performance data. Such tools easily generate hundreds of gigabytes of
performance data on current systems [7, 19]. While this fine-grain data is essential for
the identification of various types of performance problems it also causes a substantial
amount of I/O operations to file systems. Considering prevailing trends in HPC
systems, such I/O operations at extreme scale might become unreasonable in the
future [15].

Currently, two major types of performance analysis tool designs exist. So called
post-mortem tools record application behavior at runtime and flush all recorded
performance data to disk. The performance analysis itself is executed after the appli-
cation run. The second type of performance tools perform online analysis. Such tools
record and analyse performance data on-the-fly during the application run.

Compared to post-mortem tools, online tools provide the advantage of completely
avoiding I/O operations to the file system. In this paper we discuss the design chal-
lenges when developing an online monitoring prototype with post-mortem tool com-
ponents. We present an example measurement using our online prototype and eval-
uate the online approach.

Our contributions in this paper include:

Analysis and discussion of the current measurement workflow.

Design concept for an online-monitoring tool.

Initial measurements using a prototype implementation of the online tool design.
Discussion of the advantages of both common tool designs.

Our paper is organized as follows. We provide related work in Sect. 2 and follow
with challenges for performance analysis tools in Sect. 3. Section 4 gives an overview
of current tool analysis approaches, while Sect. 5 provides low-level design details of
our prototype implementation. In Sect. 6 we present analysis results using our online
monitoring prototype. Section 7 compares the online and post-mortem approach.
Finally, in Sect. 8 we conclude and discuss future work.

2 Related Work

Many tools and approaches exist in the field of parallel performance analysis. Options
range from basic tools dedicated to individual purposes, such as STAT [12], up to
complex tools providing a rich feature set like Vampir [10].

The majority of performance analysis tools employ a post-mortem analysis
approach. Examples include Arm MAP [1] and Vampir [10].

Besides the post-mortem approach, also online tools are used for performance
analysis. Periscope [5] and Paradyn [13] are examples for this tool group. Periscope
automatically detects wait states in parallel applications caused by inefficient com-
munication behavior. Paradyn employs a dynamic instrumentation approach con-

Online Performance Analysis with the Vampir Tool Set 131

trolled by a performance model to automate the identification of program parts that
contribute significant execution time.

Moreover, several studies describe the design of scalable (online) analysis tools
[2, 12, 16]. For scalable performance data aggregation many online tools use Tree
Based Overlay Networks (TBON), like MRNet [14] in case of Paradyn.

Additionally to data processing capabilities, visual scalability is also important
and challenging for parallel tools. Vampir uses timeline folding strategies [17] to
maintain visual scalability. The tool Scalasca [18] generates aggregated performance
reports out of large trace data sets in order to present summary information to the
user.

3 Challenges for Extreme-Scale Performance Tools

Following we describe two major challenges we see in todays tracing-based per-
formance analysis tools. Implementing an online-monitoring approach provides the
potential to mitigate or overcome these challenges.

3.1 Challenge: Data Volume

One top issue connected to trace-based post-mortem analysis is always the loading
and storing of performance data to/from the disk. The amount of measured perfor-
mance data directly scales with the parallelism and duration of the target application.
Eventually, the recorded performance data needs to be processed and stored. In
extreme scale scenarios this poses a significant challenge to the complete analysis
system, including hardware and software.

The following two real-world analysis examples demonstrate this situation in
practice.

Ilsche et al. [7] describe a large-scale measurement run of the S3D application
code (2, 3 PFLOP/s peak performance). S3D was measured running with 200,448
MPI processes on the HPC system Jaguar installed at ORNL. VampirTrace [10]
recorded about 1 trillion performance events that resulted in about 5 TB compressed
trace data in the OTF format [9]. Writing and analyzing 5 TB of performance data is
already problematic and required 21,515 VampirServer analysis processes. On future
machines, writing full-scale application traces to disk is not reasonable anymore and
will probably overwhelm the I/O system.

Wylie et al. [19] describe a large-scale analysis of the Sweep 3D benchmark.
Scalasca [18] was used to analyze the application running with 294,912 processes
on a BG/P system. The initial application runtime was about 8 min. With enabled
measurement infrastructure the runtime took about 9 min (measurement overhead of
about 5%). The measurement generated 790 GB of performance data. The necessary
creation of 294,912 files took about 86 min (original version) or 10 min (improved

132 M. Weber et al.

version using SIONIib for aggregating multiple logical files into one physical file on
disk). The unification of performance data took about 43 min (original version involv-
ing complete performance data rewrite) or 13 s (improved version). The Scalasca
analysis replay step took about 11 s. The measured times in this example show that
all activities related to I/O dominate the measurement.

This I/O challenge needs to be tackled in order to provide reasonable performance
analysis solutions at extreme scale. The amount of data written to the file system to
be needs to be kept at a minimum.

3.2 Challenge: Usability

An important success factor of performance analysis tools is their usability. Typically,
developers are willing to invest only limited amounts of time in the performance
analysis of their applications. Many developers quickly stop using tools that require
too much effort for producing meaningful performance results.

Figure 1 shows the suggested workflow for an performance analysis using Score-P
and Vampir. The most critical step in this workflow is the recompilation/relinking of
the application. While straightforward for some applications, this step can become
literally impossible for others. As build systems of scientific application tend to be
involving, rebuilding the application with the measurement system can become a
serious challenge. The second possibly difficult step is the creation of an appropriate
filter file in order to keep the measurement overhead at a reasonable level. While
not even necessary for some applications, this step can also become cumbersome for

Recompile &

Binary . Relink ‘ Score-P Setup .

(Instrument)

‘. Score-P Setup Create Filter

Sl Analyze

VampirServer

Fig. 1 Suggested workflow of a Score-P/Vampir performance analysis

Online Performance Analysis with the Vampir Tool Set 133

Run with ‘ Arieiha

Monitor

Fig. 2 Performance analysis workflow providing good usability

many application types. Especially the creation of filter files for C++ applications
might become involving.

Figure 2 depicts the ideal performance analysis workflow. In this scenario devel-
opers can directly use their application binaries and start with the measurement. Typ-
ically, they start the performance analysis tool together with the application binary.
No rebuild of the application or creation of filtering files is needed. During the appli-
cation run, the analysis tool records performance data and ensures low measurement
overhead. In case of our online analysis prototype, the developer sees performance
data directly as the application executes. In this scenario the initial effort for gener-
ating meaningful performance data is kept to a minimum.

4 Prevailing Performance Tool Designs

Most parallel performance analysis tools employ one of the following two design
approaches. Both designs can implement profiling as well as tracing analysis tech-
niques.

4.1 Post-Mortem Approach

The majority of parallel performance analysis tools use this design. Key characteristic
is that the actual performance analysis is executed after the application run has
finished. Therefore, measured performance data has to be retained in the file system
after the application run.

The Vampir/Score-P analysis tool set, Fig. 3, provides an example of this design.
The measurement system Score-P [11] is attached to the application and records
performance data during the application execution. After the application has finished,
Score-P writes all measured performance data to disk using the OTF2 [4] file format.
The actual performance analysis is executed with Vampir [10], reading the OTF2
files from disk back into memory. The parallel VampirServer component allows to
load and analyze performance data volumes of large-scale application runs.

134 M. Weber et al.

.H-ﬁ -' F 20ms

Y E— _B 10ms p—
.) P Trace —’[Vampl .(J !YJ}.

. Multi-Core | s P
core-|

Program © File
- ' N |] |
- - (OTF2) :

.
|

Y

VampirServer

COO0cI0

Many-Core
Program

r.‘;-s- ._|

Fig. 3 Post-mortem tool design. All performance data is captured during the application run
(Score-P) and written to the file system (OTF2 files). Analysis of the performance data is exe-
cuted after the application run (Vampir)

glg' ‘(‘i ?egend for Flgs. 5, @ Application Process/Thread o Measurement Infrastructure
, an

® Tool Process/Thread - Tool In-Memory Storage

4.2 Online Approach

The second approach implements online analysis tools. Key characteristic of this
design is that the performance analysis is performed during the application execu-
tion. Figures 4 and 5 provide an overview of this design. For recording performance
data a measurement infrastructure is attached to the target application. Parallel to the
application run dedicated analysis tool resources. The measurement infrastructure
uses the network to directly transfer measured data to the analysis processes. To main-
tain scalability, many tools like STAT [12] and Paradyn [13] employ an Tree Based
Overlay Networks (TBON) component. This tree layout allows to scalably aggregate
performance data. The root node of the tree typically generates a performance report
or continuously updates displayed performance data.

5 Building an Online-Monitoring Tool

To overcome the challenges described in Sect. 3 we designed an online analysis
prototype. In this section we share our experiences in designing an online tool using
existing post-mortem components.

Online Performance Analysis with the Vampir Tool Set 135

Vampir

Application Tool

Fig. 5 Online-monitoring architecture overview showing individual tool components

5.1 Going from Post-Mortem to Online

The Vampir analysis tool set already provides basic components required for an online
analysis tool. Like shown in Fig. 5 we use the recording component Score-P [11]
and the analysis components Vampir and VampirServer [10] for our prototype. We
measure performance data using sampling. This allows to measure uninstrumented
application binaries and to avoid the recompilation step.

Following the online design described in Sect. 4 all tool components need to run
parallel to the application. Therefore, we extend the usual target application resource
allocation to cover the additional resources for the analysis components. At appli-
cation startup (with Score-P attached) we also launch all required VampirServer
processes. Additionally, we establish communication paths from Score-P processes
to corresponding VampirServer processes. Score-P uses these paths throughout the
application run to transfer performance data to the VampirServer processes. All per-
formance data is stored in the main memory of the receiving VampirServer processes.
This procedure is indicated in Fig. 6.

Finally, we launch a Vampir instance that connects to VampirServer. Vampir dis-
plays the recorded performance data to the user. In order to provide online moni-
toring information Vampir continuously issues requests for new performance data.
The VampirServer processes holding the performance data compute the issued visu-
alization requests and send performance information to the Vampir client, Fig. 7.
However, the computation of these requests is time critical in an online scenario.

136 M. Weber et al.

VAMPIR

Application Tool

Fig. 6 Recording, transfer and storage of performance data

To provide the user with fluent continuous visual updates of the performance data,
Vampir frequently issues visualization requests in the range of about 500 ms. The
VampirServer processes need to be capable to answer these requests in time in order
to prevent overloading. Additionally to the computation of visualization requests,
the VampirServer processes also need to receive and process incoming performance
data at the same time, Fig. 6.

An important factor to control the load on VampirServer processes is their fan-in,
i.e. the number of Score-P processes that connect to one VampirServer process. The
fan-in in Fig. 5 is 2. In practice we found a fan-in of 128 (128 application/Score-P
processes connect to one VampirServer process) working well. This number keeps
load on VampirServer processes at reasonable level and avoids overloading while
limiting required analysis tool resources at the same time.

The common displays of Vampir are not designed to visualize continuous per-
formance data updates. In order to provide performance information of a running
application we developed a new monitoring view. This new view, Fig. 8, shows
only aggregated performance information and provides therefore great scalability
potential. Besides summarized profile information, the view also shows statistical
information over time. The view is designed to handle continuously incoming new
performance data, that is appended at the right side of the timeline view. New data

Online Performance Analysis with the Vampir Tool Set 137

Issue Request

Fig. 7 Time-critical processing of visualization requests

also automatically updates all profile information. Using the monitoring view allows
users to visually inspect the performance of running applications.

Together, all components build our online analysis prototype. This tool shows
that it is possible to design an online analysis tool using post-mortem components.
However, due to the nature of online performance analysis, a couple of adaptions are
necessary. We discuss these in the next section.

5.2 Design Considerations for an Online-Monitoring Tool

The following list summarizes design and implementation challenges that require
adaption or extension of existing post-mortem tool components.

Extra system resources required. Besides the usual resources required for the
application execution, an online tool additionally requires dedicated system resources
for processing performance data.

138 M. Weber et al.

W P [Ol Foe fesw fee
ErEuSeTEELD

mes

Measurement Measurement Function
Information Controls Profile Views

Fig. 8 The new monitoring view of Vampir showing performance information of a running appli-
cation

Available main memory for performance data limits recording capabilities. As
performance data is not flushed to disk, the tool retains all recorded data in main
memory. Due to dedicated resources the tool does not interfere with application
memory. However, available tool memory dictates possible measurement time.

Complex application startup required in online scenario. All tool components
need to be started together with the application. Additionally, the online tool requires
initiation of communication paths between the recording and the processing tool
components.

Additional load on network due to performance data transfer. Recording tool
components may influence application communication behavior as they send perfor-
mance data over the network.

Processing speed of performance data is critical in online scenario. Processing tool
components need to handle new incoming performance data and answer visualization
requests at the same time. This renders expensive and time-consuming operations
prohibitive. As performance data is generated continuously, tool components need
to keep up with this data stream for providing a monitoring view of the performance
data.

Online Performance Analysis with the Vampir Tool Set 139

Limited analyses capabilities in online scenario. Analyses that require complete
data sets are impossible. As performance data is continuously appended and poten-
tially incomplete, some analyses, such as critical-path analysis or message matching,
are not feasible.

Aggregated visualizations are suitable in online scenario. As processing capa-
bilities of performance data is critical, aggregated data and visualizations provide
the most scalability potential. Non-scalable visualizations easily violate processing
requirements of an online tool.

Monitoring visualization view required in online scenario. To provide the user
with continuous performance data updates, a dedicated view is necessary. Existing
post-mortem visualizations are impractical for displaying monitoring information.

Continuous time synchronization required for longer application runs. Clocks on
many HPC systems drift and continuously change their speeds, seriously deteri-
orating measurement accuracy. Strategies employed by post-mortem tools are not
applicable in an online scenario. Online tools need to implement continuous time
synchronization methods to maintain high measurement accuracy.

On-the-fly unification of data required. Post-mortem tools perform the necessary
unification of performance data after the application execution. This is not possible
in an online scenario. Online tools need to unify recorded performance metadata
on-the-fly during the running measurement.

Attending the measurement is required for performance analysis. As the online
tool does not retain any performance data, the user needs to attend the measurement
to perform the analysis. Since especially large-scale jobs may start at unsuitable
times for the user, this restriction poses a serious usability limitation.

6 Online Performance Analysis
Showcase—-COSMO-SPECS

In this section we demonstrate an example measurement using our online analysis
prototype. The case study evaluates an analysis run of the weather forecast code
COSMO-SPECS [6]. This application couples two models, COSMO and SPECS,
for more accurate simulations of cloud and precipitation processes. The COSMO
regional weather forecast model was developed at the German Weather Service
(DWD). The SPECS cloud microphysics model was developed at the Leibniz Insti-
tute for Tropospheric Research (IfT). SPECS computes detailed interactions between
aerosols, clouds, and precipitation.

In order to compare our prototype with the current post-mortem Score-P/Vampir
solution, we present such a reference measurement first. We had to rebuild COSMO-
SPECS for inserting the instrumentation instructions and attaching Score-P. The
following characteristics describe a Score-P measurement run of COSMO-SPECS
with full instrumentation enabled.

140 M. Weber et al.

Reference Measurement Using Score-P/Vampir

Measurement method: Full Instrumentation
Application parallelism: 64 cores
Application runtime: 1 min 27s

Recorded performance data: 35 GiB (6.4 MiB l)

process s

In such a scenario the measurement system records performance data in a rate of
about 6.4 MiB/s for each process. In about 1.5min 64 processes produced already
35 GiB performance data. It is obvious that such high measurement data rates cause
severe perturbation to the original application run, rendering the measurement unus-
able and stressing the entire I/O subsystem considerably. To be able to measure
higher process numbers and to retrieve usable measurement data involves filtering
steps according to the workflow described in Sect. 3.2. Simply starting with a fully
instrumented binary is not sufficient for an initial analysis of the COSMO-SPECS
performance.

Following we measure the same COSMO-SPECS application using our online
prototype. For this measurement we did not prepare the original application binary
in any way.

Vampir Online Prototype Measurement Run

Measurement method: Sampling (250 Hz)
Application parallelism: 10,240 cores

Tool processes: 86

Application runtime: 14 min 565

Recorded performance data: 71 GiB (8.1 n rKo ifss %)
Runtime overhead: <5%

Resource overhead: <1% (86 : 10,240)

Figure 8 shows measured performance data of the COSMO-SPECS measure-
ment run. Our prototype employs a sampling measurement approach. This keeps
the performance data rate low at about 8.1 KiB/s for each process. Consequently,
it is possible to record much higher process numbers (10,240) for longer durations
(15 min). The total amount of recorded performance data resides distributed over
the tool processes. This significantly eases memory requirement for individual tool
processes. Additionally, it is possible to scale tool resources as necessary with the
application. Overall, the resource overhead induced by the online approach is negli-
gible at below one percent. Our measurement caused a runtime overhead below five
percent. This shows that without prior filtering our prototype can provide meaningful
performance data using unprepared application binaries.

Online Performance Analysis with the Vampir Tool Set 141

7 Comparison of the Online with the Post-Mortem
Approach

This section compares the online approach with the established post-mortem
approach.

The online approach completely avoids I/O operations to the file system. This
allows to overcome the severe scalability limitations presented Sect. 3.1 and in turn
suggests high scalability potential of the online approach. Additionally, the online
approach enables more flexible measurement control during application runtime.
Especially when actively supervising a measurement, an user can directly control
and alter measurement parameters, such as activating/deactivating the measurement
of particular performance counters or changing the sampling frequency. As explained
in Sect. 3.2, our online analysis prototype provides an easier measurement workflow
compared to the established post-mortem workflow. This is particularly valuable for
applications that are relatively unknown to the analyst. In such cases the user can
completely avoid the initial measurement preparation (including rebuild, filtering,
etc.) required by the post mortem approach. However, this advantage also imposes
limitations on the analysis capabilities. The post-mortem approach provides more
options for detailed in-depth analysis. The online approach comes with the disad-
vantage of requiring additional resources at application runtime. This complicates
the application job setup for the analyst as well as introduces a more complex job
startup on the tool side. Finally, the online approach requires users to always be
able to actually observe the measurement run. Especially considering large-scale
application runs, this is a rather unrealistic assumption.

8 Conclusions

In this paper we present design concepts and an initial prototype for analyzing
application performance in an online approach. Further, we compare the online-
monitoring design with the established post-mortem analysis design. The introduced
online design solves I/O problems due to overloading of file systems. This presents
scalability potential for large-scale performance analysis tools.

The permanent storage of performance data for later analyses and reference is
also desirable in the online case. This should be considered in the design of an online
analysis tool.

We can conclude that both approaches are useful. The online approach is especially
useful for initial analyses of unknown code and large-scale application runs. The post-
mortem approach is suitable for very detailed analyses, especially if the application
is well know to the analyst.

In the future we plan to follow the described design ideas and further improve our
prototype.

142 M. Weber et al.

References

1. Arm Forge (Arm MAP) Version 18.0 (2017). https://www.arm.com/products/development-
tools/hpc-tools/cross-platform/forge

2. Brunst, H., Malony, A.D., Shende, S.S., Bell, R.: Online remote trace analysis of parallel appli-
cations on high-performance clusters. In: Veidenbaum, A., Joe, K., Amano, H., Aiso, H. (eds.)
High Performance Computing: 5th International Symposium, ISHPC 2003, Tokyo-Odaiba,
Japan, October 20-22, 2003. Proceedings 13, pp. 440-449. Springer, Berlin, Heidelberg (2003)

3. Brunst, H., Weber, M.: Custom hot spot analysis of HPC software with the Vampir perfor-
mance tool suite. In: Proceedings of the 6th International Parallel Tools Workshop, pp. 95-114.
Springer, Berlin, Heidelberg, September 2012

4. Eschweiler, D., Wagner, M., Geimer, M., Kniipfer, A., Nagel, W., Wolf, F.: Open trace format
2: the next generation of scalable trace formats and support libraries. In: Proceedings of the
14th Biennial ParCo Conference, vol. 22 of ParCo2011, pp. 481-490, January 2012

5. Gerndt, M., Ott, M.: Automatic performance analysis with periscope. Concurr. Comput. Pract.
Expe. 22(6), 736-748 (2010)

6. Griitzun, V., Knoth, O., Simmel, M.: Simulation of the influence of aerosol particle character-
istics on clouds and precipitation with LM-SPECS: model description and first results. Atmos.
Res. 90(24), 233-242 (2008)

7. Ilsche, T., Schuchart, J., Cope, J., Kimpe, D., Jones, T., Kniipfer, A., Iskra, K., Ross, R., Nagel,
W.E., Poole, S.: Enabling event tracing at leadership-class scale through I/O forwarding mid-
dleware. In: Proceedings of the 21st International Symposium on High-Performance Parallel
and Distributed Computing, HPDC 2012, pp. 49-60. ACM, New York, NY, USA (2012)

8. Kitayama, I., Wylie, B.J.N., Maeda, T.: Execution performance analysis of the ABySS genome
sequence assembler using Scalasca on the K computer. In: Parallel Computing: On the Road
to Exascale, volume 27 of Advances in Paralle]l Computing, pp. 63—72. International Confer-
ence on Parallel Computing 2015, Edinburgh (Scotland), 1 Sep 2015—4 Sep 2015, 10S Press,
September 2016

9. Kniipfer, A., Brendel, R., Brunst, H., Mix, H., Nagel, W.E.: Introducing the open trace format
(OTF). In: Proceedings of the 6th International Conference on Computational Science - Volume
Part IT, ICCS 2006, pp. 526-533. Springer, Berlin, Heidelberg (2006)

10. Kniipfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Miiller, M.S.,
Nagel, W.E.: The Vampir performance analysis tool-set. In: Resch, M., Keller, R., Himmler,
V., Krammer, B., Schulz, A. (eds.), Tools for High Performance Computing, Proceedings of
the 2nd International Workshop on Parallel Tools for High Performance Computing. Springer,
Berlin, Heidelberg, July 2008

11. Kniipfer, A., Rossel, C., an Mey, D., Biersdorff, S., Diethelm, K., Eschweiler, D., Geimer, M.,
Gerndt, M., Lorenz, D., Malony, A.D., Nagel, W.E., Oleynik, Y., Philippen, P., Saviankou,
P., Schmidl, D., Shende, S., Tschiiter, R., Wagner, M., Wesarg, B., Wolf, F.: Score-P: A Joint
Performance Measurement Run-Time Infrastructure for Periscope, Scalasca, TAU, and Vampir.
In: Proceedings of 5th Parallel Tools Workshop, pp. 79-91. Springer, Berlin, Heidelberg (2012)

12. Lee, G.L., Ahn, D.H., Arnold, D.C., de Supinski, B.R., Legendre, M., Miller, B.P., Schulz, M.,
Liblit, B.: Lessons learned at 208K: towards debugging millions of cores. In: Proceedings of
the 2008 ACM/IEEE Conference on Supercomputing, SC 2008, pp. 26:1-26:9. IEEE Press,
Piscataway, NJ, USA, (2008)

13. Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K., Irvin, R.B., Karavanic, K.L.,
Kunchithapadam, K., Newhall, T.: The Paradyn parallel performance measurement tool. Com-
puter 28(11), 37-46 (1995)

14. Roth, P.C., Arnold, D.C., Miller, B.P.: MRNet: a software-based multicast/reduction network
for scalable tools. In: Proceedings of the 2003 ACM/IEEE Conference on Supercomputing,
SC 2003. ACM, New York, NY, USA (2003)

15. TOP500 List of the World’s Fastest Supercomputers (2017). http://www.top500.org

https://www.arm.com/products/development-tools/hpc-tools/cross-platform/forge
https://www.arm.com/products/development-tools/hpc-tools/cross-platform/forge
http://www.top500.org

Online Performance Analysis with the Vampir Tool Set 143

16.

17.

18.

19.

Wagner, M., Hilbrich, T., Brunst, H.: Online performance analysis: an event-based workflow
design towards Exascale. In: 2014 IEEE International Conference on High Performance Com-
puting and Communications, 2014 IEEE 6th International Symposium on Cyberspace Safety
and Security, 2014 IEEE 11th International Conference on Embedded Software and Systems
(HPCC, CSS, ICESS), pp. 839-846, August 2014

Weber, M., Geisler, R., Brunst, H., Nagel, W.E.: Folding methods for event timelines in per-
formance analysis. In: Proceedings of the 29th IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pp. 205-214. IEEE Computer Society, May
2015

Wolf, F., Wylie, B.J.N., Abrahdm, E., Becker, D., Frings, W, Fiirlinger, K., Geimer, M., Her-
manns, M.-A., Mohr, B., Moore, S., Pfeifer, M., Szebenyi, Z.: Usage of the SCALASCA toolset
for scalable performance analysis of large-scale parallel applications. In: Proceedings of the
2nd Parallel Tools Workshop, Stuttgart, Germany, pp. 157-167. Springer, July 2008

Wylie, B.J.N., Geimer, M., Mohr, B., Béhme, D., Szebenyi, Z., Wolf, F.: Large-scale perfor-
mance analysis of Sweep3D with the Scalasca toolset. Parallel Proces. Lett. 20(4), 397414
(2010)

	Preface
	Contents
	A Structured Approach to Performance Analysis
	1 Introduction
	2 Background
	2.1 The EU Centre of Excellence for Performance Optimization and Productivity (POP)
	2.2 The BSC Tools
	2.3 Example Code: CheSS

	3 Structured Performance Analysis
	3.1 Measurement
	3.2 Overview and Focus of Analysis
	3.3 Performance Modeling
	3.4 Detailed Analysis
	3.5 Reporting

	4 Conclusions
	References

	Counter Inspection Toolkit: Making Sense Out of Hardware Performance Events
	1 Introduction
	2 Non-obvious Code Behavior
	3 Branch-Related Events
	3.1 Design Choices
	3.2 Controlling Branch Misprediction
	3.3 Event Categories
	3.4 Analysis of Benchmark Results

	4 Cache-Related Events
	4.1 Assisting Developers with Code Optimization

	5 Categorizing Events Automatically
	6 Related Work
	7 Conclusions
	References

	ASSIST: An FDO Source-to-Source Transformation Tool for HPC Applications
	1 Introduction
	2 Background and Goals
	3 Design and Implementation
	3.1 Overview
	3.2 Compiler Infrastructure
	3.3 Integration into MAQAO

	4 Supported Transformations
	4.1 Common Loop Transformations
	4.2 Constant Propagation and Local Dead Code Elimination
	4.3 Specialization
	4.4 Loop Count Transformation
	4.5 Block Vectorization Transformation

	5 Experiments
	6 Related Work
	7 Conclusion and Future Work
	References

	Unifying the Analysis of Performance Event Streams at the Consumer Interface Level
	1 Introduction
	2 Components in the Instrumentation Chain
	2.1 General Model
	2.2 Event Sources
	2.3 Intermediate Representations
	2.4 Event Forwarding
	2.5 Event Analysis
	2.6 Tools Interoperability

	3 Towards a Shared-Representation of Performance Events
	3.1 Towards a Tool Network
	3.2 The Producer/Consumer Interface

	4 Practical Illustration with MALP
	5 Conclusion
	6 Future Work
	References

	OMPT-Multiplex: Nesting of OMPT Tools
	1 Introduction
	2 Use Cases
	2.1 Affinity Display
	2.2 Supplementary Debugging Tool
	2.3 Other Tools Building on OMPT

	3 OMPT Multiplex Architecture
	4 Activating an OMPT Tool
	5 Tool Data Pointer
	6 Initializing an OMPT Tool
	7 Runtime Entry Points
	8 Callback Functions
	9 OMPT-Multiplex Versus OMPTn
	10 Recursive Use of OMPT Multiplex
	11 Conclusion
	References

	SCIPHI Score-P and Cube Extensions for Intel Phi
	1 Introduction
	2 Related Work
	3 Memory Analysis
	3.1 DDR4 SDRAM and MCDRAM Usage
	3.2 MCDRAM Candidates

	4 Vectorization Assistance
	4.1 Metrics

	5 Measurement Work-Flow
	5.1 Multi Run
	5.2 Cube Tools

	6 Topology Visualization
	7 Conclusion
	References

	Towards Elastic Resource Management
	1 Introduction
	2 Theoretical Background on Multiprocessor Scheduling
	2.1 Problem Statement
	2.2 Computational Complexity
	2.3 Resource-Static Scheduling in Distributed Memory HPC Systems
	2.4 Modified Scheduling Problem for Resource-Elastic Execution

	3 Performance Monitoring Infrastructure
	3.1 Process-Local Pattern Detection and Performance Measurements
	3.2 Node-Local Reductions and Performance Data Updates
	3.3 Distributed Reductions and Performance Models

	4 Elastic Performance Feedback Overheads
	4.1 Tree Based Overlay Network (TBON) Latency
	4.2 Control Flow Graph (CFG) Detection Overhead
	4.3 MPI Performance Impact of the CFG Detection Overhead

	5 Conclusion
	References

	Online Performance Analysis with the Vampir Tool Set
	1 Introduction
	2 Related Work
	3 Challenges for Extreme-Scale Performance Tools
	3.1 Challenge: Data Volume
	3.2 Challenge: Usability

	4 Prevailing Performance Tool Designs
	4.1 Post-Mortem Approach
	4.2 Online Approach

	5 Building an Online-Monitoring Tool
	5.1 Going from Post-Mortem to Online
	5.2 Design Considerations for an Online-Monitoring Tool

	6 Online Performance Analysis Showcase–COSMO-SPECS
	7 Comparison of the Online with the Post-Mortem Approach
	8 Conclusions
	References

