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Abstract The Intel® Xeon Phi™ Knights Landing processors offers unique features
with regards to memory hierarchy and vectorization capabilities. To improve tool
support within these two areas, we present extensions to the Score-P measurement
infrastructure and the Cube report explorer. With the Knights Landing edition, Intel
introduced a new memory architecture, utilizing two types of memory, MCDRAM
and DDR4 SDRAM. To assist the user in the decision where to place data struc-
tures, we introduce a MCDRAM candidate metric to the Cube report explorer. In
addition we track all MCDRAM allocations through the hbwmalloc interface, pro-
viding memory metrics like leaked memory or the high-water mark on a per-region
basis, as already known for the ubiquitous malloc/free. A Score-P metric plugin that
records memory statistics via numastat on a per process level enables a timeline
analysis using the Vampir toolset. To get the best performance out of Intel® Xeon
Phi™ the large vector processing units need to be utilized effectively. The ratio be-
tween computation and data access and the vector processing unit (VPU) intensity
are introduced as metrics to identify vectorization candidates on a per-region basis.
The Portable Hardware Locality (hwloc) [4] library allows us to visualize the dis-
tribution of the KNL-specific performance metrics within the Cube report explorer,
taking the hardware topology consisting of processor tiles and cores into account.
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1 Introduction

Many-core architectures like the Intel® Xeon Phi™ provide opportunities and chal-
lenges for intra-node optimization of applications. The Intel® Xeon Phi™ Knights
Landing (KNL) comes with a unique memory hierarchy and a 512-bit-wise vector
processing unit. To gain the the full benefits of the new features, the user needs to
understand how effectively an application makes use of the underlying hardware ca-
pabilities. The objective of the SCIPHI (Score-P and Cube extensions for Intel Phi)
project has been to incorporate this knowledge in the Score-P and Cube tools and
provide it to their users.

Figure 1 shows a schematic image of the KNL chip. It highlights some areas of
interest for the SCIPHI project, specifically the memory topology and tiled hardware
layout.

A KNL chip consists of 38 uniform tiles [16], of which at most 36 are enabled.
Each tile comes with two Silvermont cores — supporting up to four hyperthreads
— and two Advanced Vector Extensions, known as AVX-512 [7] vector process-
ing units (VPU). The high number of VPUs and the lower clock frequency of the
Silvermont cores, compared to recent Xeon CPUs, makes vectorization not just an
opportunity, it becomes a necessity for efficient node usage.

Besides the AVX-512 vector units, KNL is special with regards to memory. It
comes with two types of memory, conventional DDR4 SDRAM providing high ca-
pacity and MCDRAM (High-Bandwidth Memory) providing high bandwidth. There
are eight MCDRAM modules integrated on package, providing a total of 16 GB
high bandwidth memory. These devices come with their own memory controller,
providing a total bandwidth of more than 450 GB/s (Stream Triad [16]). The DDR4
SDRAM memory, on the other hand, is connected via two controllers, serving three
channels each. The maximum capacity is 384 GB and the bandwidth can reach up
to 90 GB/s.

The memory can be configured at boot time in one of three modes. In cache
mode, MCDRAM serves as a cache for DDR4 SDRAM. In flat mode, MCDRAM
is treated as standard memory in the same address space as DDR4 SDRAM; the
memkind library' — a heap manager built on top of jemalloc* — allows for MCDRAM
heap allocations via the hbwmalloc AP1. Hybrid mode is a combination of cache and
flat mode, where a portion of MCDRAM serves as cache while the remainder can be
use a standard memory. Cache friendly applications are likely to benefit from cache
mode. There are applications though that might benefit from explicit MCDRAM
memory management in flat mode.

In this paper we present extensions to the scalable performance measurement
infrastructure for parallel codes Score-P [11] and the performance report explorer
Cube [17] with regard to the special memory and vectorization features of the Intel®
Xeon Phi™ Knights Landing processor. In particular, we implement means to track
memory allocations and deallocations for both, DDR4 SDRAM and MCDRAM

1 https://github.com/memkind
2 http://jemalloc.net/
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memory. In addition, a MCDRAM candidate metric on a per region basis is intro-
duced. With respect to vectorization, we present VPU-related metrics that point the
user to code regions that would benefit from vectorization. In addition we utilize
the hwloc [4] library to visualize the distribution of the KNL-specific performance
metrics, taking the hardware topology into account.
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Fig. 1: Intel® Xeon Phi™ Knights Landing architecture [16]

The paper is structured as follows. Section 2 contains a survey of related work.
Sections 3 and 4 focus on the two main topics, memory analysis and vectorization
support. Section 5 presents the changes and requirements for the Score-P measure-
ment work-flow that result from the previous sections. In Section 6 we present the
Score-P hardware topology visualization in Cube using the example of the KNL
architecture. We close with a conclusion and an outlook of future extensions in Sec-

tion 7.

2 Related Work

Investigating memory usage, performance analysis tools, such as Score-P [11],
TAU [19], and Vampirtrace [9], follow their call-path oriented approach in assign-
ing measurement data to code regions. Jurenz et al. [8] highlight different methods



4 Authors Suppressed Due to Excessive Length

for querying memory data and how they are used in Vampirtrace. In contrast, tools,
such as Intel VTune [1] or HPCToolkit [3], provide a data-centric perspective. For
example, Liu et al. [12] present an extension to the HPCToolkit, using instruction-
based sampling to record memory usage through relevant events, pinpointing to an
effective memory address.

Vectorization and memory related metrics use hardware counters as basis for cal-
culation, accessed either directly or through third party software. PAPI [5] provides
such access to hardware counters, in the KNL case also to the node level uncore
counters, which are required for the analysis of memory accesses and bandwidth.
As an alternative, the LIKWID tools [20] allow similar use of counter information
on the KNL, including access to shared counters. Wylie et al. [22] highlights that de-
pending on the type measuring multiple hardware counters at the same time can be
an issue and proposes a solution through multiple manual measurements. Reinders
et al. [16] suggest metrics and thresholds for the KNL architecture, which should
serve as guidelines for the user during optimization.

Scalasca version 1.x [14], still using its internal measurement system, provided
topologies for Cube, while such support in Score-P is scheduled for a future release.

3 Memory Analysis

The availability of high bandwidth MCDRAM on the Inte]l® Xeon Phi™ Knights
Landing provides unique opportunities as well as challenges for the application de-
veloper. The potential increase in bandwidth when using MCDRAM is counterbal-
anced by the reduced capacity available. With only 16 GB MCDRAM, compared to
the maximum of 384 GB DDR4 SDRAM, the use of MCDRAM has to be managed
carefully. If the KNL is booted in cache mode, the developer has no direct access to
the MCDRAM, but the system uses this up to 16 GB as an additional, transparent
cache for DDR4 SDRAM data. However, if the node is booted in flar mode — and
to a degree in hybrid mode — the developer is responsible to explicitly manage al-
locations from MCDRAM. In these modes, at least one additional NUMA node is
present, depending on the selected cluster mode. Allocations and deallocations can
be managed in several ways. One way is to utilize the NUMA Control utility (nu-
mactl). This method requires no code changes but the allocations must completely
fit into MCDRAM, as all memory is allocated from this NUMA node, including
the data segments and stack. Another method without the need of code changes
is the use of autohbw, which comes with the memkind package. This library al-
locates memory chunks of a certain size range transparently from MCDRAM. Yet
another way to handle allocations into MCDRAM is provided by the hbwmalloc
API that also comes with the memkind library. This API offers replacements for
glibc’s malloc routines in C and C++ and the FASTMEM directive for Intel For-
tran. This method provides the maximum amount of control but comes at the cost
of mandatory code changes.
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Given these three methods to explicitly manage MCDRAM and the limited
amount of high bandwidth memory, the developer is faced with the question of
what and how much, if not all, to allocate from MCDRAM. By providing relevant
information about memory usage, tools can support the user in the decision-making
process.

3.1 DDR4 SDRAM and MCDRAM usage

If the working set fits into the 16 GB of MCDRAM, the easiest way to utilize
the high bandwidth memory is to use numactl. The command numactl -H gives
us the available NUMA nodes and with numactl -m 1 ./application we
start a program that allocates all memory from NUMA node 1, which maps to
MCDRAM in flat/quadrant mode.

If the working set is larger than the available 16 GB, shifting all memory allo-
cations to MCDRAM will fail. To determine the actual memory requirements of an
application, one can observe fine-grained allocations by tracking calls to malloc,
free, and similar functions®. A more course-grained approach is to monitor the
output of numactl, numastat, or getrusage. The open-source measurement
infrastructure Score-P [11] already provides the functionality to observe the fine-
grained allocations by wrapping the necessary library calls. This allows to determine
allocations and deallocations on a per-region and per-thread basis. It also points the
developer to leaked memory, i.e., it shows allocations that haven’t been deallocated.
Last but not least it keeps track of the used memory’s high-water mark, i.e., the
maximum amount of memory allocated at a time and points the developer to the
code region where this maximum was reached. These recorded memory metrics
can be analyzed in CUBE’s visualization of call-path profiles [17] and be timeline-
visualized by the Vampir trace analyzer [10], and potentially any other tools that
support the open Score-P output formats cubex and OTF?2 [6].

The memory allocation tracking works only for conventional dynamic memory
allocations, i.e., allocations from DDR4 SDRAM, as malloc and friends don’t
allocate from MCDRAM. By observing these conventional allocations one can esti-
mate the memory requirements of an application and determine if the entire working
set would fit into the 16 GB MCDRAM. The recorded allocations also provide the
entire set of candidates that might benefit from being moved to MCDRAM.

To also observe allocations, find leaks, and the high-water mark when explic-
itly working with MCDRAM, it seemed natural to extend Score-P to intercept the
hbwmalloc API. In flat mode, this API allocates from MCDRAM and can be used
as a drop-in replacement for the usual malloc/free set of functions. To track
the hbwmalloc allocations, we added the following functions to the set of wrapped
library functions, this way providing the same analysis opportunities as for con-

3 malloc, realloc,calloc, free,memalign, posix.memalign,valloc
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ventional allocations: hbw_malloc, hbw_calloc, hbw_realloc, hbw_free,
hbw_posix memalign, and hbw posix memalign psize.

Tracking allocations and deallocations in such a fine-grained way can induce
significant measurement overhead with regards to the Score-P-internal memory re-
quirements to perform the tracking, in particular in cases with excessive numbers of
heap memory operations. Furthermore, a high-water mark of memory consumption
below 16 GB does not guarantee that the application will fit entirely into MCDRAM.
This is due to the fact that memory is allocated on a per-page basis (usually 4K) on
first touch. The first touch may happen way later in time than the malloc call and
freed memory may not get reused. The actual memory consumption might be larger
than reported by just tracking memory allocation and deallocation routines.

To get a more accurate measure of the used memory on a per-page basis we use
the numastat command as a complimentary data source. It provides per-NUMA-
node memory statistics for processes and the operating system. This allows not only
for monitoring conventional memory allocations, but also for MCDRAM alloca-
tions in arbitrary cluster modes. Depending on the cluster mode — quadrant, SNC-2,
or SNC-4, selected at boot time —a KNL chip in flat memory mode reports two, four,
or eight NUMA nodes per quadrant, equally distributed among DDR4 SDRAM and
MCDRAM. To monitor the evolution in time of these NUMA nodes with regards
to memory, we implemented a Score-P metric plugin. Score-P metric plugins are
(third-party) shared libraries that are linked to the measurement core in order to
provide any kind of additional metrics. They are modeled after VampirTrace’s [9]
Counter Plugins [18]. Our numastat plugin is executd asynchronously, i.e., it is trig-
gered at regular intervals within an extra thread, analyses the numastat output for the
current process (numastat —p <PID>)and feeds the per-NUMA-node memory
statistics into a Score-P timeline.

Figure 2 shows the visualization of such a timeline, generated by a simple Ja-
cobi solver, using the Vampir tool set. For this demonstration some memory re-
quests have been explicitly allocated from MCDRAM, using the hbwmalloc APIL
We can observe the DDR4 SDRAM and MCDRAM allocations in Vampir via an
additional metric timelines alongside the master timeline. In our example, the nu-
mastat plugin records three additional timelines, the memory usage for each of the
two NUMA nodes and the total memory usage. Here “Node 0”(2) corresponds to
DDR4 SDRAM and “Node 1”(3) to MCDRAM.

The polling frequency of the numastat plugin can be chosen via an environment
variable. If we are solely interested in the memory evolution over time we might
accept the overhead introduced by a high polling frequency. But even with a low
polling frequency in relation to the application run time the memory usage should
be attributable to specifc phases of the application.
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Fig. 2: Memory consumption over time as reported by numastat, separated into
DDR4 SDRAM (Node 0), MCDRAM (Node 1), and Total in the Vampir timeline,
alongside with a corresponding Cube report with activated hbwmalloc tracking.

3.2 MCDRAM candidates

If the working set does not fit into the 16 GB of MCDRAM it might be beneficial
to allocate parts of the working set datastructures into high bandwidth memory us-
ing the hbwmalloc API. But such a change in allocation does not always improve
the runtime. For the CloaverLeaf [15] hydrodynamics mini-app, e.g., we see run-
time reduction due to selective allocations into MCDRAM as compared to pure
conventional allocations only for high overall DDR4 SDRAM bandwidth values,
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Fig. 3: CloverLeaf3D on a single KNL. Baseline for speedup is DDR4
SDRAM-only (blue) on a single thread. For DDR4 SDRAM + MCDRAM (green),
some data structures were manually allocated into MCDRAM. DDR4 SDRAM
bandwidth (red) is for the entire application, not individual kernels.

see Figure 3. To create this graph, we manually changed the allocation for band-
width sensitve datastructures using the FASTMEM directive according to the man-
ually found optimum in [16]. We see improvements over the DDR4 SDRAM-only
variant for higher thread counts that correspond to higher overall bandwidth. To ob-
tain the bandwidth, we counted the number of read and write accesses to DDR4
SDRAM (UNC_M_CAS_COUNT.ALL) with the help of PAPI [5], multiplied by the
cache-line size and divided over time. It is important for the process to have ex-
clusive acccess to the KNL-node as obtaining the memory accesses is done via the
uncore counters, which provide data for the entire node only, not for individual pro-
cesses or threads. Hence, this analysis does not work, if the KNL-nodes is shared
among jobs or users.

With Score-P, we measure the bandwidth values per code-region outside of
OpenMP parallel regions, due the given uncore counter restrictions. Depending
on the application, there might be a lot of code regions that show a high band-
width value. To find the most bandwidth sensitive candidates among these regions,
we need to sort them by their last-level cache-misses (LLC). This gives us the
MCDRAM candidate metric per code region, as shown in Figure 4. We derive the
MCDRAM candidate metric, i.e., we sort the high bandwith callpaths by their last-
level cache misses, in the Cube plugin KNL advisor (see also 5.2). As input we use
the PAPI-measured access counts for each DDR4 memory channel and the PAPI-
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measured LLC counts. We take care of measuring the memory accesses only per-
process while running exclusively on a single KNL node.

As Score-P and Cube purely work on code regions, the MCDRAM candidates
are also code regions. As a drawback, if a candidate code region accesses several
data structures, we cannot point to the most bandwidth sensitive structure. Vtune [1],
HPCToolkit [3][12] or ScaAnalyzer [13] might provide more detailed insight.

In addition to this drawback, the above approach is not generally applicable for
tools as accessing counters from the uncore requires priviledged access to a ma-
chine, either by setting the paranoia flag or by providing a special kernel module.
On production machines, this access is, for security reasons, often not granted. This
does not only apply to memory accesses, but to all uncore counters.
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Fig. 4: Candidates for allocations in HBM: Highest bandwidth regions are sorted
by last level cache misses.

4 Vectorization Assistance

In this section we focus on user support for vectorization, the second extension area
of the SCIPHI project. Specifically, we investigate loops with regard to their degree
of vectorization and offer suggestions for optimization candidates. This required
hardware counter measurements, obtained in multiple runs, due to the limited num-
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ber of available counter registers. In the context of counter measurements this is not
unusual for the Score-P work-flow. The suggestion of specific optimization candi-
dates on the other hand is a deviation from the standard Score-P metric semantics.
The Score-P metric concept operates on the actual value of a metric (in absolute or
relative terms) and analysis sometimes requires implicit information, e.g. if a higher
value is worse than a small value. This approach leaves the decision about the rel-
evance of a metric value of a certain call-path to the user. They need to judge the
severity of an issue based on the knowledge of the hardware architecture, the source
code, the input data, the use case, or even external parameters. Providing a generic
set of thresholds, deciding if a metric value is problematic, is a hard problem in
general, as too many parameters are involved, some outside the scope of the perfor-
mance analysis tool. In the case of vectorization assistance we used the cooperation
with Intel® to investigate the use of explicit knowledge about the architecture for
providing such thresholds in that limited context. In the following we describe the
metrics we focused on and the challenges they pose for the Score-P work-flow and
analysis.

4.1 Metrics

Before we can generate the candidate lists for vectorization optimization in Sec-
tion 5.2, we need to define the metrics that form the basis for the selection. We focus
on the three metrics, that are listed in Table 1. The first metric calculates the compu-
tational density, i.e. the number of operations performed on average for each piece
of loaded data. The 1.1 compute to data access ratio can be used to
judge how suitable an application is to run on the KNL architecture. Ideally, opera-
tions should be vectorized and each datum fetched from L1 cache should be used for
multiple operations. Table 1 shows the formula as number of vector operations vs.
the number of loads seen by the L1 cache. Similar to this, the L2 compute to
data access ratio is calculated as the number of vector operations against
the loads that initially miss the L1 cache. While the L1 metric is critical in esti-
mating a codes general suitability, the L2 metric is an indicator whether the code is
operating efficiently. The thresholds, as listed in table 1, are considered the limits
where an investigation into the code section’s vectorization would be useful. These
limits are based on recommendations of Intel® [16] for the KNL architecture and
while these hold true for most applications running on KNL, they are only guide-
lines and should be applied with care.

An additional metric, the VPU intensity, offers a rule of thumb on how well
a loop is vectorized, calculating the proportion of vectorized operations on total
arithmetic operations. This metric should be applied only to small pieces of code
and certain non-arithmetic operations, such as mask manipulation instructions, are
counted as vector operations, which can skew this ratio.

Table 1 defines the metrics as ratios of hardware counters provided by the KNL
architecture. These can be accessed in Score-P through the PAPI metrics interface
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Metric: L1 Compute to data access ratio Threshold: <1
UOPS_RETIRED.PACKED_S IMD/ MEM_UOPS_RETIRED.ALL_LOADS

Metric: L2 Compute to data access ratio Threshold: < 100+ L1 Compute to data access ratio
UOPS_RETIRED.PACKED_S IMD/ MEM_UOPS_RETIRED.L1_MISS_LOADS

Metric: VPU intensity Threshold: <0.5
UOPS_RETIRED.PACKED_S IMD/
(UOP S_RETIRED.PACKED_SIMD +UOPS_RETIRED.SCALAR.S IMD)

Table 1: Vectorization metrics and their thresholds

and can measured at a call-path level on each thread. To calculate all derived metrics,
multiple native hardware counters have to be recorded. Since the KNL architecture
provides only two general purpose counters per thread, multiple measurements have
to be used to obtain the full set of counters required. To facilitate a consistent user
experience, the Score-P / Scalasca workflow has been extended to automate multiple
runs with varying settings, which we describe in the following section.

5 Measurement Work-Flow

The analysis workflow for users of Scalasca comprises (1) instrumentation, (2) mea-
surement, and (3) result examination. The analysis options presented in the previous
sections require an adaption of this workflow, as multiple measurement runs need to
be conducted before the results can be examined. Additionally, the results of the in-
dividual measurements need to be merged before examination to provide a holistic
view across all of the different measurements. Furthermore, Cube needs to com-
pute possible optimization candidates based on the unified results in an additional
analysis step. To retain usability, we adapted the Scalasca toolset to automate the
necessary measurements and post-processing steps.

5.1 Multi Run

The SCIPHI workflow needs multiple measurement runs, as the required hardware
counters cannot be obtained by a single measurement. It is a known limitation of
hardware performance counters that only specific combinations of counters can be
combined in a single measurement [22]. The counters required for the analyses in
SCIPHI need to be obtained in multiple measurements. So while the changes to the
measurement work-flow are driven by the specific use case of SCIPHI, the generic
implementation of the workflow adaptation also benefits other hardware counter
measurements. Further benefiting scenarios are the quantification of variations in
measurement, or the verification of statistical stability of results.
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We implemented this adapted workflow as part of the Scalasca convenience com-
mand scan. As scan already automates the run of multiple execution steps—
measurement and subsequent trace analysis—it is the natural target for also orches-
trating multiple profile measurements. The basic mechanism of different execution
settings per measurement is using environment variables. In principle, this allows
arbitrary changes to the execution environment of each of the different runs, how-
ever, for the specific case of the KNL analysis the parameters have to be chosen
carefully as the ability to merge the single run results depends on the similarity of
the application runs. The new mode of multiple runs is controlled by input param-
eters of scan. The user has to specify the number of runs and the sets of variables
for each run. Because the variables parameter can have a wide range of complexity,
two ways of specification are offered: (1) a string combining all setting and (2) a
configuration file.

Using a single string to specify the individual runtime parameters is convenient
only for small parameter sets. Parameters within the string can be separated by two
types of separators: % as run separator and | as key-value pair separator. An example
for multiple key-value pairs is given below:

SCOREP_METRIC_PAPI=PAPI_TOT_CYC|SCOREP_TOTAL_MEMORY=33M

Such strings can be concatenated with an additional % between settings for each run,
where the i-th sub-string indicates the environment settings for the i-th run. Empty
sub-strings, indicated by %%, specify runs without special run configuration. If the
configuration string contains less sub-strings as there are runs configured, scan
uses as many of the sub-strings for its runs as available and assumes any missing
sub-string at the end to be empty.

Using a configuration file is more practical when using a large number of vari-
ables or runs. A valid configuration file is a text file with one variable definition
(key-value pair) per line and lines starting with a % as run separators. Analog to
shell style comments lines starting with # as well as empty lines are ignored.

In either case per-run variables can only be used if they are not already set to a
value in the current environment enabling the use of global and local variables and
a strict separation of both. With these changes scan creates a single experiment di-
rectory with sub-directories containing the numbered results of the individual steps.

5.2 Cube tools

Given successful measurements, further analysis is performed by Cube. In recent re-
leases, the Cube GUI has been extended by a flexible plugin API [17], which allows
the easy addition of new capabilities through feature-specific plugins. In the context
of this work, Cube needed to be extended in two aspects. First, the management of
multiple measurement results per run and their combination into a single unified re-
sult. Second, the analysis generating optimization suggestions based on the criteria
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presented in the Section 4. Given their different nature, these aspects are supported
through two separate plugins: Spotter and KNL Advisor.

The Spotter plugin manages the creation of a single Cube profile from the multi-
ple measurements found in the measurement archive. It scans a given directory and
merges any found Cube profile to the joint profile one after the other. Any new met-
ric found in a single profile is added to the joint Cube profile. This way, all metrics
existing in any of the profiles will be present in the joint Cube report containing all
partial counter recordings. During the merge process metrics existing in all profiles
like t ime are replaced by the last instance in the merge chain. Therefore, a mea-
surement run without additional counters can be used to provide low overhead time
information as suggested in Section 5.1. With the complete set of base metrics Cube
can calculate the derived metrics described in Section 4.1. As counters from pos-
sibly different measurement steps are combined, the user must consider the results
with care and place them in context of the application’s deterministic and repeatable
behavior.

The KNL Advisor processes the joint profile generated by the Spotter plugin and
applies the thresholds defined in Section 4.1. Based on these thresholds it generates a
list of possible candidates for optimization referring to code location and triggering
metric for each incident. As mentioned before, automatically applying thresholds
bears the risk of creating false or irrelevant information. As most of the metrics gen-
erally make sense only for small code regions with focus on loop optimization, the
calculation of the metrics and their candidates is restricted to loops and their chil-
dren in the call tree. This still allows the user to focus on the most relevant parts
from a vectorization point of view and their respective sub-trees while reducing the
clutter noticeably. Loops are special code regions marked during instrumentation
and recorded during measurement. Score-P allows for measurement of two differ-
ent loop constructs: (1) OpenMP loops, which as automatically detected during in-
strumentation, and (2) user-defined loops, which are manually instrumented using
Score-P’s user-instrumentation APIL. To narrow down the list of candidates even fur-
ther, they are classified for relevancy. The metrics used as the basis for the analyses
presented in this work are all relative values. These ratios may indicate a high rel-
ative impact while their absolute impact on the overall runtime may be negligible.
Therefore, relative and absolute impact needs to be taken into account. To honor
user knowledge about the code and allow for application dependencies no specific,
absolute cut-off threshold has been chosen here. Instead, a percentage slider based
on a code region’s runtime in relation to the total runtime determines the list of cur-
rent suggestions, which is updated when the percentage is changed. This allows the
user to apply different levels of detail to inspect and choose possible candidates for
optimization.

Figure 5 shows an example of the KNL advisor plugin in use. On the right side the
panel lists the suggestions for the current percentage setting, chosen from the slider
in the toolbar above, as a list of call site and triggering metric. This list contains
suggestions concerning the three vectorization metrics presented in Section 4.1. The
left and middle pane show relevant metric and call-path information, respectively,
for the currently selected incident. Additionally, the call tree also highlights every
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other incident of the same metric in green. When selecting a different incident the
call tree and the metric selection will update their selections to the relevant view.
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Fig. 5: KNL Advisor plugin

Generating optimization candidates and presenting them to the user in this way
provides a intuitive starting point for the performance analysis. However, the user
should always keep in mind that the suggestions given by the KNL advisor are only
guidelines for optimization.

6 Topology Visualization

When examining the behavior of applications at large scale, it is important that the
user understands how the individual processes and threads are distributed across
the machine. A visual representation of the execution topology facilitates such un-
derstanding through an intuitive access to information about the execution context.
Furthermore, in the case of many-core architectures, such as Intel KNL, the distribu-
tion on a single many-core node is of particular interest to gain the best performance
for an application. The Score-P measurement infrastructure encodes this informa-
tion as Cartesian topologies and saves it as part of the measurement profile to be
visually explored using the Cube report browser.

Score-P Cartesian topologies map processes and threads to coordinates in multi-
ple dimensional regular grids. While Score-P can record Cartesian topologies of ar-
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bitrary dimensions, they are folded onto three dimensions for visualization in Cube.
Score-P records meta information about the dimensions of the underlying topology
and coordinates for each location, however, it is currently limited to CPU threads
and processes excluding accelerators.

Currently, Score-P supports the generation of Cartesian topologies from four
sources: (1) MPI Cartesian communicators, (2) proprietary query interfaces, (3)
processes-by-threads matrices, and (4) user-defined topologies. Through the inter-
ception of the MPI_Cart_create call, Score-P automatically uses the information
passed to the call to generate all necessary topology information and no further user
interaction is needed. Each call MPI_Cart_create will create a separate topol-
ogy. For platforms that provide an interface to supply coordinate information, such
as the IBM Blue Gene or the Futjitsu K Computer, Score-P creates a hardware topol-
ogy, mapping processes and threads with relation to the given dimensional informa-
tion. For hybrid applications, Score-P automatically generates a two-dimensional
topology with all processes in one dimension and their respective threads in the
other dimension. The relationships visualized are similar to those shown in the sys-
tem tree widget. However, the data is presented in a much more concise fashion,
allowing a better overview of larger configurations. Finally, Score-P provides a user
API to manually define Cartesian topologies. This allows users to record topology
information as needed and enables the generation of application-level topologies
that do not directly map to any other method above.

As topologies are regarded static through-out the execution of the application,
topologies require pinning of threads to cores. Since the coordinate mapping is only
done once per location Score-P will produce erroneous results if a thread migrates
during the run-time. To keep a consistent mapping between threads and hardware
locations, over-subscription isn’t supported and application threads should be evenly
spread between hardware threads.

An application run without explicit use of topologies in either MPI or user in-
strumentation will show the ”Process x Threads” topology and, if supported, a hard-
ware topology. Users can enable and disabled each source of topology information
through the use of environment variables. This can become useful in cases where
hardware topologies are problematic or for example when MPI Cartesian topologies
are created in a loop iteration creating too many for practical use in the Cube result.
As the coordinate information is only acquired once per location the run-time over-
head is limited, however these meta data will increase the size of the measurement
results depending on the number of locations. Therefore, depending on scale and
memory requirements it can be helpful to reduce the memory overhead caused by
topologies.

As part of the project, we investigated options to provide platform topology sup-
port for the KNL architecture. Since, the KNL architecture doesn’t supply a specific
interface to inquire this information directly during measurement, a more generic
approach has been implemented in Score-P. Using the third-party hwloc library [4],
Score-P now provides topology information for generic Linux systems and the KNL
architecture in particular. Hwloc gathers node-level information about the core dis-
tribution and the memory hierarchy. It is an Open-MPI sub-project, mostly devel-
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Fig. 6: Topology on a single node with one thread per core. Using one of four
hardware threads per core and with two cores for each of the 36 tiles in
z-dimension.

oped by the TADaaM team at Inria. As it provides only node-level information and
no further information about the network structure is available, Score-P maps all
nodes onto a single dimension. A further limit of hwloc is that some levels of the
collected hierarchy, e.g., the L2 cache level of the KNL tiles, have only a logical
numbering, which precludes any implicit assumption about a direct mapping to the
respective hardware element. This limits the recording of direct neighborhood rela-
tions of the 2D tile map of the KNL chip, as shown in the schematic of Figure 1.
Therefore, Score-P maps it to a single dimension instead.

In general, topology data is stored in both Cube profiles as well as OTF2 trace
definitions. However, in the context of this project, we focused on the user benefits
of visualization in Cube, as the core of the extensions for SCIPHI are based on
profile data.

Figure 6 shows an example of a hardware topology for KNL obtained via hwloc
during a measurement of the NAS Parallel Benchmark[21]. The Cube topology
viewer plugin is available in the third pane of the Cube display, as an alternative
visualization option to system tree, boxplot and others. Every topology created dur-



SCIPHI Score-P and Cube extensions for Intel Phi 17

ing run-time is represented by an additional tab in this pane. With the help of the
detachment mechanism for tabs, Cube allows the inspection of multiple topologies
simultaneously. Most of the plugin space is used for a three dimensional display of
the selected topology. The view can be manipulated in zoom and orientation either
through mouse interaction or the toolbar. The user can select locations and query
process and thread information on the selected coordinate. At the bottom of the
display is a control interface that allows dimensions to be mapped to the three di-
mensions of the display, which becomes a necessity once you have more than three
dimensions defined in your topology. There are two options to reduce the number
of dimensions: folding and slicing. With folding the user can choose which input
dimensions should be folded into one output dimension. In the case of slicing, three
dimensions are selected to be shown completely and for the remaining dimensions
single elements are chosen. Figure 6 shows a single node example, where the cluster
dimension doesn’t provide additional information and can be safely merged with the
tile level of the KNL architecture.

That leads to an arrangement, where one (x,y) layer represents the two cores each
with four hardware threads of a tile while the z-dimension shows the 36 tiles of a
KNL node. Unused coordinates within topology are grayed out, as can be seen in
this example where only one thread per core has been used.

To highlight the effect of different dimensions and their layout on the topol-
ogy visualization, Figure 7 shows the detached view of a second example of using
topologies on KNL. This second example shows a topology representation of an
application measurement run on multiple nodes. The application is a Monte Carlo
simulation called Casino, executed on 16 nodes of the CINECA Marconi cluster [2].
As the measurement now spans multiple nodes, the off-node dimension cannot be
folded into the node layer without obscuring the node-level information. Figure 7
therefore keeps this dimension separate in the z dimension, while retaining the node-
level dimensions mapped to the x and y dimension. That way one x,y plane repre-
sents one KNL cluster node with a line along the x dimension containing one tile,
showing the hardware threads grouped by core.

As these two simple examples show, there is not a singular best way to arrange the
dimensions in three dimension. Its usefulness depends on run-time configurations
and user focus. Specifically in the case of the KNL architecture, the number of
relevant dimensions also depends on the chosen cluster and memory modes as they
influence the number of NUMA and sub-NUMA nodes. Furthermore, the examples
demonstrate that topologies are a powerful tool to visualize run-time distribution
of performance metrics, across large-scale measurements while having all locations
visible without needing to scroll through lists of locations. This enhances the user
ability to recognize patterns based on process placement and severity.



18 Authors Suppressed Due to Excessive Length

HWLOC Topology v~

3
15 - e

G

)

Kl
® fold -
y I ]
Y
z slice

Fig. 7: View of the topology in detached state for an application run with a set of
cluster nodes. On the x axis the two cores of a tile are arrayed in sequence with
each of their four hardware threads grouped together. In combination with the 36
tiles in y direction each x,y plane represents a node. The 16 levels in z direction
show the 16 used nodes for this run.

7 Conclusion

In this work we presented a set of extensions for Score-P that originated from a
cooperation with Intel® and were therefore focused on the KNL architecture. With
objective of improving the user experience and providing options for more in depth
intra-node analysis, we focused on the important topics of memory hierarchy and
vectorization. For the memory hierarchy, the explicit use of the two types of avail-
able memory, DDR4 SDRAM and MCDRAM, were of particular interest. The ex-
tensions highlight possibilities for tracking allocations and actual usage as a guide-
line to steer the developer to an efficient use of the fast MCDRAM. The work on
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the vectorization assistance using knowledge about the specific target architecture
presents a deviation from the standard Score-P metric definition. Instead of report-
ing just the severity of a metric, thresholds are provided as deciding factor to suggest
optimization candidates.

The architecture dependent use case created possibilities for future work in
broadening the focus of the presented extensions. The adaptations for multiple runs
have a wide range of possible use cases, however for generic and integrated use in
the standard work flow the limiting ramifications have to be addressed, in particular
ensuring or at least checking the similarities between runs. Also, for a broader use
of metrics from different measurements the scaling of potential different timings
have to be considered, possible through the use of reference counters. Streamlin-
ing the work-flow might also contain an automatic way of source to source loop
instrumentation to avoid the manual step of interaction.
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