001     861612
005     20210130000904.0
020 _ _ |a 978-1-7281-1644-0
024 7 _ |a 10.1109/EMPDP.2019.8671560
|2 doi
024 7 _ |a 2128/21897
|2 Handle
024 7 _ |a altmetric:58015542
|2 altmetric
024 7 _ |a WOS:000467257000039
|2 WOS
037 _ _ |a FZJ-2019-02058
100 1 _ |a Akar, Nora Abi
|0 P:(DE-HGF)0
|b 0
111 2 _ |a 2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)
|c Pavia
|d 2019-02-13 - 2019-02-15
|w Italy
245 _ _ |a Arbor — A Morphologically-Detailed Neural Network Simulation Library for Contemporary High-Performance Computing Architectures
260 _ _ |c 2019
|b IEEE
300 _ _ |a 274-282
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1563261363_1217
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a We introduce Arbor, a performance portable library for simulation of large networks of multi-compartment neurons on HPC systems. Arbor is open source software, developed under the auspices of the HBP. The performance portability is by virtue of back-end specific optimizations for x86 multicore, Intel KNL, and NVIDIA GPUs. When coupled with low memory overheads, these optimizations make Arbor an order of magnitude faster than the most widely-used comparable simulation software. The single-node performance can be scaled out to run very large models at extreme scale with efficient weak scaling.Keywords: HPC;GPU;neuroscience;neuron;software
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)
|0 G:(EU-Grant)720270
|c 720270
|f H2020-Adhoc-2014-20
|x 1
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 2
536 _ _ |a SLNS - SimLab Neuroscience (Helmholtz-SLNS)
|0 G:(DE-Juel1)Helmholtz-SLNS
|c Helmholtz-SLNS
|x 3
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Cumming, Ben
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Karakasis, Vasileios
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kusters, Anne
|0 P:(DE-Juel1)166193
|b 3
|u fzj
700 1 _ |a Klijn, Wouter
|0 P:(DE-Juel1)168169
|b 4
|u fzj
700 1 _ |a Peyser, Alexander
|0 P:(DE-Juel1)161525
|b 5
|e Corresponding author
|u fzj
700 1 _ |a Yates, Stuart
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1109/EMPDP.2019.8671560
856 4 _ |u https://juser.fz-juelich.de/record/861612/files/paper.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/861612/files/paper.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:861612
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)166193
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)168169
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)161525
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2019
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21