000861619 001__ 861619
000861619 005__ 20210130000906.0
000861619 0247_ $$2Handle$$a2128/21898
000861619 037__ $$aFZJ-2019-02065
000861619 1001_ $$0P:(DE-HGF)0$$aJoecker, Benjamin$$b0
000861619 245__ $$aTransfer of a quantum state from a photonic qubit to a gate-defined quantum dot
000861619 260__ $$c2018
000861619 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1553689033_19600
000861619 3367_ $$2ORCID$$aWORKING_PAPER
000861619 3367_ $$028$$2EndNote$$aElectronic Article
000861619 3367_ $$2DRIVER$$apreprint
000861619 3367_ $$2BibTeX$$aARTICLE
000861619 3367_ $$2DataCite$$aOutput Types/Working Paper
000861619 520__ $$aInterconnecting well-functioning, scalable stationary qubits and photonic qubits could substantially advance quantum communication applications and serve to link future quantum processors. Here, we present two protocols for transferring the state of a photonic qubit to a single-spin and to a two-spin qubit hosted in gate-defined quantum dots (GDQD). Both protocols are based on using a localized exciton as intermediary between the photonic and the spin qubit. We use effective Hamiltonian models to describe the hybrid systems formed by the the exciton and the GDQDs and apply simple but realistic noise models to analyze the viability of the proposed protocols. Using realistic parameters, we find that the protocols can be completed with a success probability ranging between 85-97%.
000861619 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000861619 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000861619 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
000861619 7001_ $$0P:(DE-HGF)0$$aCerfontaine, Pascal$$b1
000861619 7001_ $$0P:(DE-Juel1)173003$$aHaupt, Federica$$b2$$ufzj
000861619 7001_ $$0P:(DE-Juel1)172641$$aSchreiber, Lars$$b3$$ufzj
000861619 7001_ $$0P:(DE-Juel1)145316$$aKardynal, Beata$$b4$$ufzj
000861619 7001_ $$0P:(DE-Juel1)172019$$aBluhm, Hendrik$$b5$$eCorresponding author$$ufzj
000861619 8564_ $$uhttps://arxiv.org/abs/1812.06561v1
000861619 8564_ $$uhttps://juser.fz-juelich.de/record/861619/files/1812.06561v1.pdf$$yOpenAccess
000861619 8564_ $$uhttps://juser.fz-juelich.de/record/861619/files/1812.06561v1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000861619 909CO $$ooai:juser.fz-juelich.de:861619$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000861619 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173003$$aForschungszentrum Jülich$$b2$$kFZJ
000861619 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172641$$aForschungszentrum Jülich$$b3$$kFZJ
000861619 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145316$$aForschungszentrum Jülich$$b4$$kFZJ
000861619 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172019$$aForschungszentrum Jülich$$b5$$kFZJ
000861619 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000861619 9141_ $$y2019
000861619 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000861619 920__ $$lyes
000861619 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000861619 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x1
000861619 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000861619 980__ $$apreprint
000861619 980__ $$aVDB
000861619 980__ $$aI:(DE-Juel1)PGI-9-20110106
000861619 980__ $$aI:(DE-Juel1)PGI-11-20170113
000861619 980__ $$aI:(DE-82)080009_20140620
000861619 980__ $$aUNRESTRICTED
000861619 9801_ $$aFullTexts