Home > Publications database > Transfer of a quantum state from a photonic qubit to a gate-defined quantum dot > print |
001 | 861619 | ||
005 | 20210130000906.0 | ||
024 | 7 | _ | |a 2128/21898 |2 Handle |
037 | _ | _ | |a FZJ-2019-02065 |
100 | 1 | _ | |a Joecker, Benjamin |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Transfer of a quantum state from a photonic qubit to a gate-defined quantum dot |
260 | _ | _ | |c 2018 |
336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1553689033_19600 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
336 | 7 | _ | |a preprint |2 DRIVER |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
520 | _ | _ | |a Interconnecting well-functioning, scalable stationary qubits and photonic qubits could substantially advance quantum communication applications and serve to link future quantum processors. Here, we present two protocols for transferring the state of a photonic qubit to a single-spin and to a two-spin qubit hosted in gate-defined quantum dots (GDQD). Both protocols are based on using a localized exciton as intermediary between the photonic and the spin qubit. We use effective Hamiltonian models to describe the hybrid systems formed by the the exciton and the GDQDs and apply simple but realistic noise models to analyze the viability of the proposed protocols. Using realistic parameters, we find that the protocols can be completed with a success probability ranging between 85-97%. |
536 | _ | _ | |a 524 - Controlling Collective States (POF3-524) |0 G:(DE-HGF)POF3-524 |c POF3-524 |f POF III |x 0 |
650 | 2 | 7 | |a Condensed Matter Physics |0 V:(DE-MLZ)SciArea-120 |2 V:(DE-HGF) |x 0 |
650 | 1 | 7 | |a Information and Communication |0 V:(DE-MLZ)GC-120-2016 |2 V:(DE-HGF) |x 0 |
700 | 1 | _ | |a Cerfontaine, Pascal |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Haupt, Federica |0 P:(DE-Juel1)173003 |b 2 |u fzj |
700 | 1 | _ | |a Schreiber, Lars |0 P:(DE-Juel1)172641 |b 3 |u fzj |
700 | 1 | _ | |a Kardynal, Beata |0 P:(DE-Juel1)145316 |b 4 |u fzj |
700 | 1 | _ | |a Bluhm, Hendrik |0 P:(DE-Juel1)172019 |b 5 |e Corresponding author |u fzj |
856 | 4 | _ | |u https://arxiv.org/abs/1812.06561v1 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/861619/files/1812.06561v1.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/861619/files/1812.06561v1.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:861619 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)173003 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)172641 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)145316 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)172019 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-524 |2 G:(DE-HGF)POF3-500 |v Controlling Collective States |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-11-20170113 |k PGI-11 |l JARA Institut Quanteninformation |x 1 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
980 | _ | _ | |a preprint |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a I:(DE-Juel1)PGI-11-20170113 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|