000861620 001__ 861620
000861620 005__ 20240610120515.0
000861620 0247_ $$2arXiv$$aarXiv:1810.00891
000861620 0247_ $$2Handle$$a2128/21899
000861620 0247_ $$2altmetric$$aaltmetric:49157327
000861620 037__ $$aFZJ-2019-02066
000861620 1001_ $$0P:(DE-HGF)0$$aLöbl, Matthias C.$$b0$$eCorresponding author
000861620 245__ $$aExcitons in InGaAs Quantum Dots without Electron Wetting Layer States
000861620 260__ $$c2018
000861620 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1553688998_19600
000861620 3367_ $$2ORCID$$aWORKING_PAPER
000861620 3367_ $$028$$2EndNote$$aElectronic Article
000861620 3367_ $$2DRIVER$$apreprint
000861620 3367_ $$2BibTeX$$aARTICLE
000861620 3367_ $$2DataCite$$aOutput Types/Working Paper
000861620 520__ $$aThe Stranski-Krastanov (SK) growth-mode facilitates the self-assembly of quantum dots (QDs) using lattice-mismatched semiconductors, for instance InAs and GaAs. SK QDs are defect-free and can be embedded in heterostructures and nano-engineered devices. InAs QDs are excellent photon emitters: QD-excitons, electron-hole bound pairs, are exploited as emitters of high quality single photons for quantum communication. One significant drawback of the SK-mode is the wetting layer (WL). The WL results in a continuum rather close in energy to the QD-confined-states. The WL-states lead to unwanted scattering and dephasing processes of QD-excitons. Here, we report that a slight modification to the SK-growth-protocol of InAs on GaAs -- we add a monolayer of AlAs following InAs QD formation -- results in a radical change to the QD-excitons. Extensive characterisation demonstrates that this additional layer eliminates the WL-continuum for electrons enabling the creation of highly charged excitons where up to six electrons occupy the same QD. Single QDs grown with this protocol exhibit optical linewidths matching those of the very best SK QDs making them an attractive alternative to standard InGaAs QDs.
000861620 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000861620 588__ $$aDataset connected to arXivarXiv
000861620 7001_ $$0P:(DE-HGF)0$$aScholz, Sven$$b1
000861620 7001_ $$0P:(DE-HGF)0$$aSöllner, Immo$$b2
000861620 7001_ $$0P:(DE-HGF)0$$aRitzmann, Julian$$b3
000861620 7001_ $$0P:(DE-Juel1)172928$$aDenneulin, Thibaud$$b4$$ufzj
000861620 7001_ $$0P:(DE-Juel1)144926$$aKovacs, Andras$$b5$$ufzj
000861620 7001_ $$0P:(DE-Juel1)145316$$aKardynal, Beata$$b6
000861620 7001_ $$0P:(DE-HGF)0$$aWieck, Andreas D.$$b7
000861620 7001_ $$0P:(DE-HGF)0$$aLudwig, Arne$$b8
000861620 7001_ $$0P:(DE-HGF)0$$aWarburton, Richard J.$$b9
000861620 8564_ $$uhttps://arxiv.org/abs/1810.00891
000861620 8564_ $$uhttps://juser.fz-juelich.de/record/861620/files/1810.00891.pdf$$yOpenAccess
000861620 8564_ $$uhttps://juser.fz-juelich.de/record/861620/files/1810.00891.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000861620 909CO $$ooai:juser.fz-juelich.de:861620$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000861620 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172928$$aForschungszentrum Jülich$$b4$$kFZJ
000861620 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich$$b5$$kFZJ
000861620 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145316$$aForschungszentrum Jülich$$b6$$kFZJ
000861620 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000861620 9141_ $$y2019
000861620 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000861620 920__ $$lyes
000861620 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000861620 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1
000861620 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x2
000861620 9801_ $$aFullTexts
000861620 980__ $$apreprint
000861620 980__ $$aVDB
000861620 980__ $$aI:(DE-Juel1)PGI-9-20110106
000861620 980__ $$aI:(DE-Juel1)PGI-5-20110106
000861620 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000861620 980__ $$aUNRESTRICTED
000861620 981__ $$aI:(DE-Juel1)ER-C-1-20170209