001     861620
005     20240610120515.0
024 7 _ |a arXiv:1810.00891
|2 arXiv
024 7 _ |a 2128/21899
|2 Handle
024 7 _ |a altmetric:49157327
|2 altmetric
037 _ _ |a FZJ-2019-02066
100 1 _ |a Löbl, Matthias C.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Excitons in InGaAs Quantum Dots without Electron Wetting Layer States
260 _ _ |c 2018
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1553688998_19600
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a The Stranski-Krastanov (SK) growth-mode facilitates the self-assembly of quantum dots (QDs) using lattice-mismatched semiconductors, for instance InAs and GaAs. SK QDs are defect-free and can be embedded in heterostructures and nano-engineered devices. InAs QDs are excellent photon emitters: QD-excitons, electron-hole bound pairs, are exploited as emitters of high quality single photons for quantum communication. One significant drawback of the SK-mode is the wetting layer (WL). The WL results in a continuum rather close in energy to the QD-confined-states. The WL-states lead to unwanted scattering and dephasing processes of QD-excitons. Here, we report that a slight modification to the SK-growth-protocol of InAs on GaAs -- we add a monolayer of AlAs following InAs QD formation -- results in a radical change to the QD-excitons. Extensive characterisation demonstrates that this additional layer eliminates the WL-continuum for electrons enabling the creation of highly charged excitons where up to six electrons occupy the same QD. Single QDs grown with this protocol exhibit optical linewidths matching those of the very best SK QDs making them an attractive alternative to standard InGaAs QDs.
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 0
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |a Scholz, Sven
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Söllner, Immo
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ritzmann, Julian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Denneulin, Thibaud
|0 P:(DE-Juel1)172928
|b 4
|u fzj
700 1 _ |a Kovacs, Andras
|0 P:(DE-Juel1)144926
|b 5
|u fzj
700 1 _ |a Kardynal, Beata
|0 P:(DE-Juel1)145316
|b 6
700 1 _ |a Wieck, Andreas D.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Ludwig, Arne
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Warburton, Richard J.
|0 P:(DE-HGF)0
|b 9
856 4 _ |u https://arxiv.org/abs/1810.00891
856 4 _ |u https://juser.fz-juelich.de/record/861620/files/1810.00891.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/861620/files/1810.00891.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:861620
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172928
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144926
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)145316
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 1
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 2
980 1 _ |a FullTexts
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21