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The Stranski-Krastanov (SK) growth-mode facilitates the self-assembly of quantum dots (QDs)
using lattice-mismatched semiconductors, for instance InAs and GaAs. SK QDs are defect-free and
can be embedded in heterostructures and nano-engineered devices. InAs QDs are excellent photon
emitters: QD-excitons, electron-hole bound pairs, are exploited as emitters of high quality single
photons for quantum communication. One significant drawback of the SK-mode is the wetting
layer (WL). The WL results in a continuum rather close in energy to the QD-confined-states. The
WL-states lead to unwanted scattering and dephasing processes of QD-excitons. Here, we report
that a slight modification to the SK-growth-protocol of InAs on GaAs – we add a monolayer of
AlAs following InAs QD formation – results in a radical change to the QD-excitons. Extensive
characterisation demonstrates that this additional layer eliminates the WL-continuum for electrons
enabling the creation of highly charged excitons where up to six electrons occupy the same QD.
Single QDs grown with this protocol exhibit optical linewidths matching those of the very best SK
QDs making them an attractive alternative to standard InGaAs QDs.

InGaAs quantum dots (QDs) grown in the Stranski-
Krastanov (SK) mode are excellent photon emitters. In-
dividual QDs provide a source of highly indistinguish-
able single photons1–3 and a platform for spin-photon
and spin-spin entanglement4–6. Their solid state nature
enables the integration of QDs in on-chip nanostruc-
tures such as photonic crystal cavities or waveguides7.
In some respects, a QD can be considered as an arti-
ficial atom. However, this approximation is often too
simplistic. Unlike a real atom in free space, an exciton
(a bound electron-hole pair) in a QD can couple to fur-
ther degrees of freedom in its solid state environment, for
instance phonons8–10 and nuclear spins11–15. One prob-
lematic source of unwanted coupling is the so-called wet-
ting layer (WL)16–19. The WL is an inherent feature of
SK-growth and represents a two-dimensional layer lying
between all QDs.

On account of the confinement in the growth direc-
tion, there is an energy gap between the WL-continuum
and QD-electron and QD-hole states. However, this gap
protects the QD-electrons and -holes from coupling to
the WL only to a certain extent. The gap vanishes
for a QD containing several electrons due to the on-site
Coulomb repulsions; the energy gap can be bridged by
carrier-carrier and carrier-phonon scattering16,20. Fur-
thermore, the gap is not complete: a low energy tail
of the WL-continuum can extend to the QD-confined-
states21. The result is that the WL has negative con-
sequences for quantum applications. Specific examples
are well known. Multi-electron states of a QD hybridize
with extended states of the WL16,18,22 severely limiting
the prospects for using multi-electron states as qubits23.
QD–WL Auger processes can lead to a parasitic cou-
pling between a QD and an off-resonant cavity24–26. A
broad absorption background due to WL-states21 leads
to damping of exciton Rabi oscillations17,27 and enhanced
exciton-phonon scattering28.

We show here that the QD-properties can be radi-
cally altered when WL-states are absent. Electron WL-
states are removed by a simple modification to the SK-
growth: InGaAs QDs are overgrown with a monolayer of
AlAs29–32. The absence of electron WL-states for AlAs-
capped QDs is explained on the nano-scale: AlAs in-
creases the bandgap of the material laterally surround-
ing a QD thereby eliminating bound electron WL-states.
Changes regarding the QD-properties are drastic: we ob-
serve highly charged excitons with narrow optical emis-
sion where up to six electrons occupy the conduction
band shells of the QD – a novelty for QDs in the con-
sidered wavelength regime. The QD-potential is deep-
ened and hybridization with any WL-continuum is ab-
sent. Furthermore, the QDs have close to transform
limited optical linewidths at low temperature, a very
sensitive probe of the material quality33. We propose
that conventional SK QDs can be profitably replaced
with their no-electron WL-counterparts in all SK QD-
quantum-devices.

I. SAMPLE GROWTH AND ENSEMBLE
MEASUREMENTS

The QDs are grown by molecular beam epitaxy on a
GaAs-substrate with (001)-orientation. The first mono-
layer of InAs deposited on GaAs (at 525 ◦C) adopts the
GaAs lattice constant. After deposition of 1.5 monolay-
ers, the strain mismatch between InAs and GaAs leads
to island formation34 (Fig. 1(a),(b)). The islands be-
come optically-active QDs on capping with GaAs. A
two-dimensional InAs layer remains, the WL. This is the
widely used SK self-assembly process.

Here, the InAs islands are capped initially with a sin-
gle monolayer of AlAs which has a higher bandgap than
GaAs (Fig. 1(c)). Subsequently, a capping layer of 2.0 nm
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pushes the bound WL-states in the valence band towards
the GaAs valence band edge.

III. TRIPLY-CHARGED EXCITON

We present a method to probe the high-lying energy
states, for instance the QD-d-shell and WL-states, with-
out occupying them. The method relies on an imbalance
with respect to shell filling in the X3− final state. Fol-
lowing X3− recombination, there are two p-shell electrons
yet just one s-shell electron. (Of the two s-shell electrons
in the X3− initial state, one recombines with the hole
to create a photon.) This imbalance enables Auger-like
processes: one of the p-shell electrons falls into the s-
shell thereby losing energy; the other p-shell electron is
given exactly this energy and is promoted to a higher-
lying state (Fig. 3(c)). This process will only occur if a
high-lying state exists close to the right energy. If the
s–p separation is ~ω0, the process is therefore a probe
of the energy levels lying ~ω0 above the p-shell. Some
spectroscopy is possible: the energy levels of a QD can
be tuned with a magnetic field. These processes can re-
sult in large changes to the PL on charging from X2−

to X3−16,18. For instance, in a QD without a d-shell,
on applying a magnetic field the X3− PL shows a series
of pronounced anti-crossings with Landau levels associ-
ated with the WL16: the WL is thereby probed without
occupying it.

We explore initially X3− on standard InGaAs QDs.
We measure PL in a magnetic field parallel to the growth
direction (Fig. 3). For the singly and doubly charged ex-
citons, X1− and X2−, the emission splits into two lines
by the Zeeman effect and blue-shifts via its diamagnetic
response (see Supplementary Information). The X3− has
a much richer strcuture (Fig. 3(a)). At zero magnetic
field, the X3− has a configuration with two electrons in
the QD-s-shell and two electrons in the p-shell. Accord-
ing to Hund’s rules, the ground state electrons occupy
different p-sub-shells with parallel spins (a spin-triplet)
and two emission lines result, split by the large electron-
electron exchange energy, denoted as t (triplet) and ts
(triplet satellite) in Fig. 3(a)16. On increasing the mag-
netic field, the degeneracy (or near degeneracy) of the p-
sub-shells is lifted. In the Fock-Darwin model16,42,43, the
p−-sub-shell (angular momentum Lz = +1) moves down
in energy by − 1

2
~ωc while the p+-sub-shell (angular mo-

mentum Lz = −1) moves up in energy by + 1
2
~ωc (Fig.

3(d)). Here ~ωc is the electron cyclotron energy. Once
this splitting becomes large enough the X3− ground state
turns from a triplet to a singlet where two electrons of op-
posite spin populate the lower p-sub-shell (Fig. 3(d))16.
The transition from triplet to singlet ground state oc-
curs at ∼ 1.3 T (Fig. 3(a)). The singlet (and not the
triplet) ground state represents the probe of the higher
lying electronic states.

The magnetic field dependence of the X3− singlet-PL-
spectrum on a standard InGaAs QD shows several anti-

crossings (Fig. 3(a)). We develop a model to describe the
X3− final state including Coulomb interactions within a
harmonic confinement and couplings to a WL-continuum
(see Supplementary Information). In addition to the en-
ergies of the transitions, the linewidths are a powerful
diagnostic. The spectrally narrow PL-lines arise from
intra-QD-processes; the spectrally broad PL-lines from
QD–WL-continuum coupling as the continuum of WL-
states facilitates rapid dephasing16,28.

The singlet emission at ∼ 1.3 T is spectrally broad:
this signifies that the final state couples to the WL-
continuum. There is an anti-crossing at ∼ 3 T with a
state with a linear magnetic field dispersion. This signi-
fies a hybridization with the 0th WL-Landau-level (Fig.
3(e)). A second singlet emission line appears at higher
energy, and there are two further anti-crossings at high
magnetic field (A1 and A2 in Fig. 3(a)). We exclude
that these processes are caused by a hybridization with
the WL since the optical emission stays narrow in this
regime. The first part of the explanation is an Auger-
like process within the QD itself (Fig. 3(e)). The opti-
cal decay of the X3− singlet leaves behind two electrons
in the lower p-sub-shell and one electron in the s-shell
(state |a〉). This final state can couple to state |b〉 via an
Auger-like process where one p-electron fills the vacancy
in the s-shell and the other goes up into the d-shell. This
coherent coupling between the two basis states |a〉 and
|b〉 leads to two eigenstates after optical decay and thus
explains the second emission line at higher energy. The
second part of the explanation involves the single particle
states. With increasing magnetic field, the d−-sub-shell
of the QD moves down in energy with a dispersion of
−~ωc while the p+-sub-shell moves up with 1

2
~ωc. In the

Fock-Darwin model, angular momentum is a good quan-
tum number and d− and p+ therefore cross. Experimen-
tally, this is not the case: there is a small anti-crossing.
This is not surprising for a real QD where there is no ex-
act rotational symmetry. To describe this, we introduce
basis state |c〉 (with an electron in the p+- rather than
the d−-shell) and a small coupling between states |b〉 and
|c〉 to describe the symmetry breaking. This leads to the
two characteristic anti-crossings (A1, A2) of the singlet
emission pair with a line with dispersion of approximately
− 3

2
~ωc.

An analytic Hamiltonian describing all these processes
is given in the Supplementary Information. Using realis-
tic parameters for the QD, the model (Fig. 3(a)) repro-
duces the X3− PL extremely well. This strong agreement
allows us to extract the key QD parameters from this ex-
periment: the electron s–p splitting (~ω0 = 24.1 meV)
and the electron effective mass (0.07mo). We are also
to conclude that the potential is sub-harmonic: the p–d
splitting is smaller than the s–p splitting.

With this understanding of the X3−, we turn to the
spectra from an AlAs-capped QD (Fig. 3(b)). As for the
standard InGaAs QD, there is a transition from triplet
to singlet X3− ground state, albeit at higher magnetic
fields. In complete contrast to the standard InGaAs QD,
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Y. Lyanda-Geller, and T. L. Reinecke, Phys. Rev. Lett.
95, 177403 (2005).

41 N. A. J. M. Kleemans, J. van Bree, A. O. Govorov, J. G.
Keizer, G. J. Hamhuis, R. Nötzel, A. Y. Silov, and P. M.
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VII. SUPPLEMENTARY INFORMATION

A. Sample Growth, Fabrication, and STEM-measurements

The sample heterostructure is grown with molecular beam epitaxy (MBE) on a GaAs wafer with (001)-orientation.
The overall growth conditions are similar to those described in Ref. 49. The heterostructure, together with growth
temperatures and growth rates of individual layers, is given in Table S1. To flatten the wafer surface, an AlAs/GaAs-
superlattice is grown first. A spacer of 50 nm GaAs separates the superlattice from a silicon-doped (n-type) back-gate
(300 nm). QDs are separated from the back-gate by a tunnel barrier of 30 nm GaAs. The QDs (growth described in
the main text) are overgrown with an additional 8 nm of GaAs. To keep the current through the diode structure low,
a tunnel barrier (another AlAs/GaAs-superlattice) is grown above the QDs. The heterostructure is completed with a
thin GaAs capping layer.

For electric charge control of the QDs, a semi-transparent Schottky top-gate (∼ 6 nm Au) is deposited on part of
the sample. An ohmic contact to the back-gate is fabricated by annealing In-solder for 5 min at 370 ◦C in a forming
gas atmosphere.

For scanning transmission electron microscopy (STEM) investigations, an electron-transparent lamella was prepared
by conventional mechanical polishing followed by argon ion milling. The high resolution HAADF STEM-image was
acquired using a FEI Titan G2 equipped with a Schottky field emission gun operated at 200 kV, a Cs probe corrector
(CEOS DCOR). The annular dark-field detector semi-angle used was 69.1 mrad. For STEM, a series of 10 images
were recorded with a short acquisition time, aligned and summed using the Velox software (Thermo Scientific) to
improve the quality of the image. In the STEM-HAADF image, the intensity of the atomic columns is approximately
proportional to the square of the atomic number50. STEM measurements are combined with an energy dispersive
X-ray (EDX) measurement (same microscope). Fig. S5 shows a STEM-image of an AlAs-capped QD. The image has
atomic resolution showing that QD and its surroundings are defect-free. For better visibility, we increase the contrast
of the original STEM-image by Gaussian smoothing. The result corresponds to a STEM-image taken with lower
spatial resolution and is shown in Fig. S5(b). In the STEM-images, a single QD is visible as a bright (In-rich) region.
Due to the lower atomic number of aluminium, the AlAs-capping surrounding the QD appears darker. Part of the
AlAs/GaAs-superlattice grown above the QDs is visible as an alternating sequence of bight and dark regions in the
STEM-image.

B. Modeling of the Magneto-PL-measurements

We present the calculation which describes the magneto-PL of the X3− exciton complex. The experimental data
are shown in Fig. 3 of the main text. The energy of the optical emission lines is given by the energy difference between
the initial exciton state before optical recombination and the energy of the electron configuration in the final state
after optical recombination. We calculate the energies of the initial and final states separately.

Material Thickness (nm) Temperature (◦C) Rate (Å)

GaAs 50 600 2.0

AlAs/GaAs 30×(2/2) 600 1.0/2.0

GaAs 50 600 2.0

n-GaAs 300 600 2.0

GaAs 5 575 2.0

GaAs 25 600 2.0

InAs QDs – 525 –

AlAs-capping 0.3 525 1.0

GaAs-capping 2 500 2.0

flushing step – 600 –

GaAs 8 600 2.0

AlAs/GaAs 30×(3/1) 600 1.0/2.0

GaAs 10 600 2.0

TABLE S1. Description of the sample. The different layers of the heterostructure are listed in the order of the growth.
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yields:

|a〉 =
1√
6

∣

∣

∣

∣

∣

∣

∣

s1 ↑1 s2 ↑2 s3 ↑3
p1 ↑1 p2 ↑2 p3 ↑3
p1 ↓1 p2 ↓2 p3 ↓3

∣

∣

∣

∣

∣

∣

∣

=

1√
6
[ ↑1↑2↓3 (s1p2p3 − p1s2p3)

+ ↑1↓2↑3 (p1p2s3 − s1p2p3)

+ ↓1↑2↑3 (p1s2p3 − p1p2s3) ].

(S5)

Here, the indices label the different particles, the arrows (↑, ↓) represent the electron spin, and the orbital wave
function is represented by the shell label s, p, and d (see Fig. S6). For the basis states |a〉, |b〉, and |c〉 the sum of all
the direct and the exchange energies is given by:

EC
a =

31

16

e2

4πǫ0ǫr

1

Le

√

π

2
, (S6)

EC
b =

67

32

e2

4πǫ0ǫr

1

Le

√

π

2
, (S7)

EC
c =

9

4

e2

4πǫ0ǫr

1

Le

√

π

2
. (S8)

In these expressions, e is the elementary charge, ǫ0 the permittivity of vacuum, and ǫr the relative permittivity.
We focus now on the couplings between the basis states |a〉, |b〉, and |c〉. As illustrated in the main text, states |a〉

and |b〉 are coupled by an Auger-like process. For state |a〉, two electrons occupy the p−-shell (with Lz = +1). In the
Auger-like process, one of these two electrons goes down to the s-shell (with Lz = 0) while the other one goes up to
the d−-shell (with Lz = +2). This process conserves angular momentum and leads to a coupling between |a〉 and |b〉.
The corresponding matrix element is given by:

Aab = 〈pLz=+1
1 pLz=+1

2 | Ĥc | sLz=0
1 dLz=+2

2 〉 = −5
√

2

32

e2

4πǫ0ǫr

1

Le

√

π

2
, (S9)

where s, p and d label the single particle shell with particle number in the subscript and the angular momentum
quantum number in the superscript. Ĥc is the two-particle Coulomb operator given by:

Ĥc =
1

2

∑

i

∑

j 6=i

Ĥij ,with (S10)

Ĥij =
e2

4πǫ0ǫr

1

|ri − rj |
, (S11)

where ri are the coordinates of the interacting particles.
Fig. S7(a) shows a numerical simulation based on the model developed so far: a coupling between |a〉 and |b〉; no

coupling of states |a〉 and |b〉 to state |c〉. (State |c〉 is therefore irrelevant at this point in the calculation.) Without
the |a〉 ↔ |b〉 coupling, there is just a single pair of emission lines. (The splitting within the pair into two lines arises
from the spin Zeeman effect.) With the |a〉 ↔ |b〉 coupling, there is no longer just one pair of emission lines but two,
Fig. S7(a). This feature describes part of the experimental data, Fig. S7(d). This demonstrates both that the d-shell
exists and that the Auger-like process admixes the d-shell into the X3− final states.

The experimental X3− emission from a standard QD with WL (Fig. S7(d)) shows a richer structure than that
described with just |a〉 ↔ |b〉 coupling (Fig. S7(a)). In the experiment, there are several anti-crossings at high
magnetic field along with a complex structure at low magnetic field. This leads us to the conclusion that additional
couplings must be introduced to describe the experimental results.

First, we consider the coupling between states |b〉 and |c〉. For a perfectly symmetric harmonic confinement potential
this coupling is zero since states |b〉 and |c〉 have different angular momenta. Nevertheless, the experiment points to
a coupling in the present case. This coupling represents a slight asymmetry in the confinement potential of the QD,
since in this case angular momentum is not a good quantum number54. In our simulations we assume a constant
coupling term ∆bc between the states |b〉 and |c〉. A numerical simulation taking the coupling ∆bc into account is
shown in Fig. S7(b). The coupling accounts for the pronounced anti-crossings (A1, A2 in the main text) in the X3−

emission lines at high magnetic field.
We note that we neglect any direct coupling between states |a〉 and |c〉. At low magnetic field, |c〉 is energetically

far away from |a〉. At high magnetic field, when |c〉 comes energetically close to the states |a〉 and |b〉, a coupling
between |a〉 and |c〉 would be both a two particle and angular momentum non-conserving process. On this basis, we
assume that a |a〉 ↔ |c〉 coupling is much weaker than the |b〉 ↔ |c〉 coupling. (The |b〉 ↔ |c〉 coupling is a single
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|b〉, the only basis state with a QD-d-shell component. In particular, we add a constant energy term to the energy of
state |b〉 (E0

b + EC
b → E0

b + EC
b + δEb) and scale the coupling between states |a〉 and |b〉 with a constant pre-factor

(Aab → sab ·Aab).
The full Hamiltonian describing the final states in the |a〉, |b〉, |c〉, |d〉 basis becomes:

Ĥf =











E0
a + EC

a sab ·Aab 0 −AL

sab ·Aab E0
b + EC

b + δEb ∆bc td
0 ∆bc E0

c + EC
c 0

−AL td 0 Ed











(S13)

To obtain the energies of all final states after optical emission we diagonalise this Hamiltonian numerically for all
different magnetic fields. To calculate the actual energies of the optical emission, the eigenenergies are subtracted from
the energy of the initial exciton state, i.e. the energy of the X3− before radiative recombination. The initial exciton
state is depicted in Fig. 3(c) of the main text. It couples optically only to the final state |a〉. The relative brightness

of one particular optical emission line is given by the probability of component |a〉 in the particular eigenstate of Ĥf .
A numerical simulation taking also the couplings AL and tL to the 0th WL-Landau-level into account is shown

in Fig. S7(c). We achieve an excellent agreement with the experiment, Fig. S7(d). The model accounts for all the
main features in the experiment, both the energies of the multiple emission lines and their relative intensities. All the
major experimental features are reproduced. This gives us confidence that the model accounts for all the significant
interactions in the X3− final state in the most complicated case, an InGaAs QD with associated WL.

2. The X3− initial states

After X3− recombination, there is a vacancy in the s-shell, allowing Auger-like processes to take place. These
processes admix the QD-d-shell and, should they exist, the WL-Landau-levels, to the available final states. The X3−

final states have therefore a rich structure. As we argue in the main text, they provide an ideal way of exploring
the single particle states at energies well above both the s- and p-shells. The X3− initial states have a much simpler
structure.

At high magnetic field, the X3− initial state has two electrons in the conduction band s-shell and two electrons in
the p−-shell of the QD along with a hole in the valence band s-shell. For the electrons, this represents a spin singlet.
Other configurations have considerably larger single particle energies and are therefore ignored. The energy of this
exciton is given by an effective band gap of the QD E∗

g plus the sum of electron and hole single particle energies and
Coulomb interaction terms:

Ei = E∗
g + E0

i + Eee
i + Eeh

i . (S14)

Here the term E0
i denotes the single particle energy of electrons and hole, Eee

i is the sum of the Coulomb interactions
between the electrons, and Eeh

i is the Coulomb interaction between electrons and hole. The hole wave function and
its single particle energy can be obtained by using Eqs. S1 and S2, replacing the electron effective mass with the hole
effective mass m∗

h. For the single particle energy of electrons and hole in the X3− singlet state we obtain:

E0
i = 6~ω1 − ~ωc + ~ωh

1 , with (S15)

ωh
1 =

√

(

ωh
0

)2
+

(

ωh
c

2

)2

, (S16)

where ~ωh
c = ~eB/m∗

h is the cyclotron energy of the hole. We make here the assumption that the QD-confinement-

potential experienced by the hole equals that experienced by the electrons. This leads to the relation m∗
h

(

ωh
0

)2
=

m∗
e (ω0)

2
and determines implicitly the parameter ωh

0 . For the electron-electron and electron-hole Coulomb energies
we obtain55:

Eee
i =

67

16

e2

4πǫ0ǫr

1

Le

√

π

2
, (S17)

Eeh
i = −2

e2
√
π

4πǫ0ǫr

(

1
√

L2
e + L2

h

+
2L2

e + L2
h

2 (L2
e + L2

h)
3/2

)

. (S18)
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standard InGaAs QD AlAs-capped QD

~ω0 (meV) 24.163 27.524

~ωh
0 (meV) 9.125 10.653

m∗

e/mo 0.0727 0.0750

m∗

h/mo 1.0 0.501

sab 0.443 0.921

sab ·Aab (meV) -2.038 -4.677

E∗

g (eV) 1.3102 1.2993

∆bc (meV) 0.774 1.033

td (meV) 1.549 –

AL (meV) 0.383 –

E0

d (meV) 154.2 –

δEb (meV) -4.639 10.372

ǫr 13.16 12.93

gX 1.52 1.60

TABLE S2. Parameters for the simulation of the X3− singlet emission lines. Simulation and data for a standard InGaAs and
an AlAs-capped QD are shown in Fig. S7 and Fig. 3(a),(b) of the main text. Parameter values are stated with high precision
to facilitate reproducing the simulations.

Note that the magnetic field dependence of the electron and hole effective lengths, Le =
√

~/(ω1m∗
e) and Lh =

√

~/(ωh
1m

∗
h), causes a magnetic field dependence of the electron-electron and electron-hole Coulomb matrix elements,

leading in turn to a magnetic field dependence of the emission energies beyond the diamagnetic shift in a single particle
picture. In our simulations this effect is taken into account.

There are two final points. First, there is a clear Zeeman effect in the experimental data (Fig. S7(d)). The Zeeman
energy EZ = gXµBB, where gX = ge+gh is the exciton g-factor, is included after computing the eigenstates of Eq. S13.
The Zeeman effect splits every emission line into two; the energy separation of the lines is the Zeeman energy. This
holds for negligible spin-orbit interaction such that spin and orbital degrees of freedom can be considered separately.
Secondly, at low magnetic fields, the X3− initial state is an electronic triplet state: the s-shell is doubly occupied, the
p+-shell is singly occupied, and the p−-shell is singly occupied. This triplet initial state results in two PL-lines16,38.
The triplet state is a less sensitive probe to higher lying single particle states: it does not show a hybridization with
the d-shell or with WL-Landau-levels16. However, at small magnetic fields, around ∼ 1.3 T, the singlet initial state
becomes the ground state, not the triplet state. As such, we have focussed the entire calculation on the X3− singlet
initial state. To include the X3− triplet initial state in the simulations, we include it phenomenologically with a
parabolic dispersion.

3. Parameters

The parameters for the simulations shown in Fig. S7 and Fig. 3(a),(b) of the main text are given in Table S2. For
both the standard InGaAs QD, and the AlAs-capped QD, the model parameters were tuned to give a quantitative
description of the experimental results.

For the AlAs-capped QDs, there is no evidence whatsoever in the PL-spectra for the process related to the hy-
bridization with the WL. This is evidence that the WL for electrons no longer exists. The terms AL and td are
therefore set to zero in the simulation.

For the standard InGaAs QD, the intra-dot Auger-like process (i.e. the |a〉 ↔ |b〉 coupling) results in two pairs
of emission lines. For the AlAs-capped QD, only a single emission pair is observed. This is evidence that the d-
shell of the QD is increased in energy with respect to harmonic confinement. For the simulation, we add a positive
correction to the d-shell energy: δEb ∼ +10 meV. Neglecting Coulomb interactions, this leads to a splitting of δEb

between states |a〉 and |b〉. In the X3− final states, the “second” energy pair of emission lines are red-shifted by
∼ δEb +2 ·sab · |Aab| ∼ 20 meV. Furthermore, since δEb > sab · |Aab|, the admixture of basis state |a〉 in the final state
corresponding to the “second” emission pair is strongly reduced: the intensity of the second emission lines becomes
very weak.

Additional evidence that the QD-potential “hardens” (becomes super-harmonic) on capping with AlAs comes from
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ensemble PL-measurements which show a larger p–d splitting compared to the standard InGaAs QDs (Fig. 1(i) of
the main text). Microscopically, this behaviour must result from the AlAs which surrounds the QD laterally.

For InGaAs QDs with a WL, δEb is negative. This is consistent with the concept that the presence of a WL
“softens” the confinement potential at higher energies. However, in comparison to the confinement energy ~ω0 the
term δEb is small. In other words, for these standard QDs, the approximation of harmonic confinement is still a
reasonable one.

The parameters for the electron and hole confinement energies (~ω0 and ~ωh
0 ) are comparable to literature

values59,60. The term ~ω0 is larger for the AlAs-capped QD. This is consistent with the understanding that the
AlAs-capping increases the lateral carrier-confinement of the QD.

The values for the electron effective mass are similar to the bulk effective mass of GaAs61 in both cases. In contrast,
the hole effective masses are larger than the bulk value. For the calculation shown here, the in-plane effective mass
has to be considered and the effective mass is influenced by the strong confinement of the QD62. Nevertheless, the

hole mass is rather large. This may reflect the fact that the relation m∗
h

(

ωh
0

)2
= m∗

e (ω0)
2

is inaccurate. There is

insufficient information in the spectra to determine m∗
h and ωh

0 independently.
Values obtained for the dielectric constant ǫr are in both cases between the bulk value of GaAs and InAs (ǫGaAs =

12.563,64, ǫInAs = 15.264).

4. Coulomb Matrix Elements for 2D Harmonic Oscillator Wavefunctions

In the previous section, the direct Coulomb interaction and the exchange interaction between particles is calculated.
In this section we give a brief description how these energies can be calculated analytically.

Matrix elements are calculated by inserting the single particle wave functions (see Eq. S2) into Eqs. S3 and S4.
One obtains a sum of integrals wich have the form:

∫∫∫∫ ∞

−∞

e−
α

2 (x2

1
+y2

1
+x2

2
+y2

2)
√

(x1 − x2)2 + (y1 − y2)2
xn1

1 yn2

1 xn3

2 yn4

2 dx1 dy1 dx1 dy2 (S19)

After a coordinate transformation into centre of mass coordinates,

X =
1

2
(x1 + x2) , Y =

1

2
(y1 + y2) , x =

1

2
(x1 − x2) , y =

1

2
(y1 − y2) , (S20)

an analytical solution for the matrix elements can be obtained by using the integral relation (for even n,m,N,M):

∫∫∫∫ ∞

−∞

e−α(x2+X2+y2+Y 2)
√

x2 + y2
xnymXNY M dx dy dX dY

=

(

1√
α

)N+M+2

Γ

(

N + 1

2

)

Γ

(

M + 1

2

)
∫ 2π

0

∫ ∞

0

e−αr2rn+m sinn (φ) cosm (φ) dr dφ

=
1

2

(

1√
α

)N+M+n+m+3

Γ

(

N + 1

2

)

Γ

(

M + 1

2

)

Γ

(

n + m + 1

2

)
∫ 2π

0

sinn (φ) cosm (φ) dφ. (S21)

Here, we used a transformation into polar coordinates and the following relation:

∫ ∞

0

e−αx2

xndx =
1

2

(

1√
α

)n+1

· Γ

(

n + 1

2

)

. (S22)

For arbitrary wave functions of a two-dimensional harmonic oscillator, a completely general analytical solution for the
Coulomb matrix elements is given in Refs. 65 and 66, in agreement with values for specific matrix elements obtained
by calculating the integrals one-by-one55.

C. Wetting-Layer-PL and Indirect Excitons

The nature of the WL-states can also be probed by measuring the emission not from the QDs but from the WL
itself. We glean understanding from the standard sample with WL. We then apply this understanding to the sample
with AlAs-capped QDs.
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as shown in Fig. 2(c)). The measurement shows exciton complexes ranging from a positively charged exciton (X+) to
a five-fold negatively charged exciton (X5−). As pointed out in the main text, we find optically narrow emission for
the excitons X3−, X4− and X5− which is in strong contrast to standard InGaAs QDs with WL-states for electrons38.

Shown in Fig. S9(b) is the photoluminescence of the X1− and the X2− excitons as a function of magnetic field
on the same AlAs-capped QD. Both emission lines show a Zeeman splitting and a diamagnetic shift. An equivalent
measurement on a standard InGaAs QD is shown in Fig. S9(c) for comparison. The diamagnetic shift and Zeeman
splitting are similar for both types of QDs. The X2− emission shows a larger fine structure in the case of the AlAs-
capped QD (similar to the X3− triplet emission shown in the main text) implying that the electron-hole exchange in
the initial exciton state is larger for the AlAs-capped QDs28.


