001     861629
005     20220930130208.0
024 7 _ |a 10.5194/bg-16-1111-2019
|2 doi
024 7 _ |a 1726-4170
|2 ISSN
024 7 _ |a 1726-4189
|2 ISSN
024 7 _ |a 2128/21900
|2 Handle
024 7 _ |a WOS:000461618700002
|2 WOS
024 7 _ |a altmetric:57263104
|2 altmetric
037 _ _ |a FZJ-2019-02075
082 _ _ |a 550
100 1 _ |a Klosterhalfen, Anne
|0 P:(DE-Juel1)159313
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Source partitioning of H2O and CO2 fluxes based on high-frequency eddy covariance data: a comparison between study sites
260 _ _ |a Katlenburg-Lindau [u.a.]
|c 2019
|b Copernicus
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1554299489_3488
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a For an assessment of the roles of soil and vegetation in the climate system, a further understanding of the fluxcomponents of H2O and CO2 (e.g., transpiration, soil respiration) and their interaction with physical conditions andphysiological functioning of plants and ecosystems is necessary. To obtain magnitudes of these flux components, we appliedsource partitioning approaches after Scanlon and Kustas (2010; SK10) and after Thomas et al. (2008; TH08) tohigh-frequency eddy covariance measurements of 12 study sites covering different ecosystems (croplands, grasslands,and forests) in different climatic regions. Both partitioning methods are based on higher-order statistics of the H2O andCO2 fluctuations, but proceed differently to estimate transpiration, evaporation, net primary production, and soil respiration.We compared and evaluated the partitioning results obtained with SK10 and TH08, including slight modificationsof both approaches. Further, we analyzed the interrelations among the performance of the partitioning methods, turbulencecharacteristics, and site characteristics (such as plant cover type, canopy height, canopy density, and measurement height).We were able to identify characteristics of a data set that are prerequisites for adequate performance of the partitioningmethods.\\SK10 had the tendency to overestimate and TH08 to underestimate soil flux components. For both methods, the partitioningof CO2 fluxes was less robust than for H2O fluxes. Results derived with SK10 showed relatively large dependencieson estimated water use efficiency (WUE) at the leaf level, which is a required input. Measurements of outgoinglongwave radiation used for the estimation of foliage temperature (used in WUE) could slightly increase the qualityof the partitioning results. A modification of the TH08 approach, by applying a cluster analysis for the conditionalsampling of respiration–evaporation events, performed satisfactorily, but did not result in significant advantages comparedto the original method versions developed by Thomas et al. (2008). The performance of each partitioning approachwas dependent on meteorological conditions, plant development, canopy height, canopy density, and measurementheight. Foremost, the performance of SK10 correlated negatively with the ratio between measurement height and canopyheight. The performance of TH08 was more dependent on canopy height and leaf area index. In general, all site characteristicsthat increase dissimilarities between scalars appeared to enhance partitioning performance for SK10 and TH08.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
536 _ _ |a IDAS-GHG - Instrumental and Data-driven Approaches to Source-Partitioning of Greenhouse Gas Fluxes: Comparison, Combination, Advancement (BMBF-01LN1313A)
|0 G:(DE-Juel1)BMBF-01LN1313A
|c BMBF-01LN1313A
|f Nachwuchsgruppen Globaler Wandel 4+1
|x 1
536 _ _ |a TERENO - Terrestrial Environmental Observatories (TERENO-2008)
|0 G:(DE-HGF)TERENO-2008
|c TERENO-2008
|f TERENO-2008
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Graf, Alexander
|0 P:(DE-Juel1)129461
|b 1
700 1 _ |a Brüggemann, Nicolas
|0 P:(DE-Juel1)142357
|b 2
700 1 _ |a Drüe, Clemens
|0 0000-0002-8240-9031
|b 3
700 1 _ |a Esser, Odilia
|0 P:(DE-Juel1)129450
|b 4
|u fzj
700 1 _ |a González-Dugo, María P.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Heinemann, Günther
|0 0000-0002-4831-9016
|b 6
700 1 _ |a Jacobs, Cor M. J.
|0 0000-0003-4079-9067
|b 7
700 1 _ |a Mauder, Matthias
|0 0000-0002-8789-163X
|b 8
700 1 _ |a Moene, Arnold F.
|0 0000-0003-3614-8544
|b 9
700 1 _ |a Ney, Patrizia
|0 P:(DE-Juel1)166467
|b 10
|u fzj
700 1 _ |a Pütz, Thomas
|0 P:(DE-Juel1)129523
|b 11
|u fzj
700 1 _ |a Rebmann, Corinna
|0 0000-0002-8665-0375
|b 12
700 1 _ |a Ramos Rodríguez, Mario
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Scanlon, Todd M.
|0 0000-0001-8869-1675
|b 14
700 1 _ |a Schmidt, Marius
|0 P:(DE-Juel1)144420
|b 15
|u fzj
700 1 _ |a Steinbrecher, Rainer
|0 0000-0002-5931-4210
|b 16
700 1 _ |a Thomas, Christoph K.
|0 0000-0003-2277-6013
|b 17
700 1 _ |a Valler, Veronika
|0 P:(DE-Juel1)165760
|b 18
700 1 _ |a Zeeman, Matthias J.
|0 0000-0001-9186-2519
|b 19
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 20
|u fzj
773 _ _ |a 10.5194/bg-16-1111-2019
|g Vol. 16, no. 6, p. 1111 - 1132
|0 PERI:(DE-600)2158181-2
|n 6
|p 1111 - 1132
|t Biogeosciences
|v 16
|y 2019
|x 1726-4189
856 4 _ |u https://juser.fz-juelich.de/record/861629/files/invoice_Helmholtz-PUC-2019-15.pdf
856 4 _ |u https://juser.fz-juelich.de/record/861629/files/Manuskript.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/861629/files/Manuskript.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/861629/files/invoice_Helmholtz-PUC-2019-15.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:juser.fz-juelich.de:861629
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159313
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129461
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)142357
910 1 _ |a Department of Environmental Meteorology, University of Trier
|0 I:(DE-HGF)0
|b 3
|6 0000-0002-8240-9031
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129450
910 1 _ |a IFAPA – Consejería de Agricultura, Pesca y Desarrollo Rural, Centro Alameda del Obispo
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Department of Environmental Meteorology, University of Trier
|0 I:(DE-HGF)0
|b 6
|6 0000-0002-4831-9016
910 1 _ |a Wageningen Environmental Research, Wageningen University and Research
|0 I:(DE-HGF)0
|b 7
|6 0000-0003-4079-9067
910 1 _ |a Institute of Meteorology and Climate Research, IMK-IFU, Karlsruhe Institute of Technology
|0 I:(DE-HGF)0
|b 8
|6 0000-0002-8789-163X
910 1 _ |a Meteorology and Air Quality Group, Wageningen University and Research
|0 I:(DE-HGF)0
|b 9
|6 0000-0003-3614-8544
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)166467
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)129523
910 1 _ |a Department Computational Hydrosystems, Helmholtz Centre for Environmental Research, UFZ
|0 I:(DE-HGF)0
|b 12
|6 0000-0002-8665-0375
910 1 _ |a IFAPA – Consejería de Agricultura, Pesca y Desarrollo Rural, Centro Alameda del Obispo
|0 I:(DE-HGF)0
|b 13
|6 P:(DE-HGF)0
910 1 _ |a Department of Environmental Sciences, University of Virginia
|0 I:(DE-HGF)0
|b 14
|6 0000-0001-8869-1675
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)144420
910 1 _ |a Institute of Meteorology and Climate Research, IMK-IFU, Karlsruhe Institute of Technology
|0 I:(DE-HGF)0
|b 16
|6 0000-0002-5931-4210
910 1 _ |a Micrometeorology Group, University of Bayreuth
|0 I:(DE-HGF)0
|b 17
|6 0000-0003-2277-6013
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 18
|6 P:(DE-Juel1)165760
910 1 _ |a Institute of Meteorology and Climate Research, IMK-IFU, Karlsruhe Institute of Technology
|0 I:(DE-HGF)0
|b 19
|6 0000-0001-9186-2519
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 20
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOGEOSCIENCES : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21