001     861642
005     20210130000924.0
024 7 _ |a 10.1002/srin.201700515
|2 doi
024 7 _ |a 0177-4832
|2 ISSN
024 7 _ |a 1611-3683
|2 ISSN
024 7 _ |a 1869-344X
|2 ISSN
024 7 _ |a WOS:000443590100008
|2 WOS
037 _ _ |a FZJ-2019-02088
082 _ _ |a 660
100 1 _ |a Wesselmecking, Sebastian
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Strain Aging Behavior of an Austenitic High-Mn Steel
260 _ _ |a Weinheim
|c 2018
|b Wiley-VCH-Verl.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1553775433_27223
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The bake hardening treatment shows great potential for increasing the yield strength of steel components for automotive applications. This study investigates the effects of bake hardening on the yield strength and ductility of an austenitic high‐Mn steel. In order to identify a promising process window, the prestrain, the bake hardening temperature, and the annealing time are varied. The bake hardening effect is evaluated by the uniaxial tensile tests with digital image correlation (DIC) in situ monitoring. The results show strong bake hardening effect on the high‐Mn steel when certain amount of prestrain is applied. Large amounts of prestrain even leads to room temperature aging. Small angle neutron scattering (SANS) measurements indicate the absence of Mn–C short range ordering (SRO) after the prestrain; however, the nano‐sized Mn–C SRO re‐occurs after the annealing. At high prestrain degree, an increase in the number density of the Mn–C SRO is found in both cases, after annealing at elevated temperature and aging at room temperature, indicating an accelerated Mn–C SRO formation. The results suggest that SRO is responsible for an increase in the yield strength and a pronounced yielding of the high‐Mn steel after bake hardening treatment.
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-6G15
|f POF III
|x 1
|c POF3-6G15
|a 6G15 - FRM II / MLZ (POF3-6G15)
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 0
650 1 7 |a Engineering, Industrial Materials and Processing
|0 V:(DE-MLZ)GC-1601-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-2: Small angle scattering diffractometer
|f NL3ao
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS2-20140101
|5 EXP:(DE-MLZ)KWS2-20140101
|6 EXP:(DE-MLZ)NL3ao-20140101
|x 0
700 1 _ |a Song, Wenwen
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ma, Yan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Roesler, Thorsten
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hofmann, Harald
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bleck, Wolfgang
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1002/srin.201700515
|g Vol. 89, no. 9, p. 1700515 -
|0 PERI:(DE-600)2148555-0
|n 9
|p 1700515 -
|t Steel research international
|v 89
|y 2018
|x 1611-3683
856 4 _ |u https://juser.fz-juelich.de/record/861642/files/Wesselmecking_et_al-2018-steel_research_international.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/861642/files/Wesselmecking_et_al-2018-steel_research_international.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:861642
|p VDB:MLZ
|p VDB
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|9 G:(DE-HGF)POF3-6G15
|x 1
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|b Forschungsbereich Materie
|l Großgeräte: Materie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a No Peer Review
|0 StatID:(DE-HGF)0020
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b STEEL RES INT : 2017
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k Neutronenstreuung ; JCNS-1
|l Neutronenstreuung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21