000861672 001__ 861672
000861672 005__ 20210130000934.0
000861672 0247_ $$2doi$$a10.1002/mrm.26353
000861672 0247_ $$2ISSN$$a0740-3194
000861672 0247_ $$2ISSN$$a1522-2594
000861672 0247_ $$2pmid$$apmid:27476684
000861672 0247_ $$2WOS$$aWOS:000403803900013
000861672 037__ $$aFZJ-2019-02109
000861672 082__ $$a610
000861672 1001_ $$0P:(DE-Juel1)131765$$aGras, Vincent$$b0$$eCorresponding author
000861672 245__ $$aDiffusion-weighted DESS protocol optimization for simultaneous mapping of the mean diffusivity, proton density and relaxation times at 3 Tesla
000861672 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2017
000861672 3367_ $$2DRIVER$$aarticle
000861672 3367_ $$2DataCite$$aOutput Types/Journal article
000861672 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1553882494_25990
000861672 3367_ $$2BibTeX$$aARTICLE
000861672 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861672 3367_ $$00$$2EndNote$$aJournal Article
000861672 520__ $$aPurposeTo design a general framework for the optimization of an MRI protocol based on the the diffusion‐weighted dual‐echo steady‐state (DW‐DESS) sequence, enabling quantitative and simultaneous mapping of proton density (PD), relaxation times urn:x-wiley:07403194:media:mrm26353:mrm26353-math-0001 and urn:x-wiley:07403194:media:mrm26353:mrm26353-math-0002 and diffusion coefficient D.MethodsA parameterization of the DW‐DESS sequence minimizing the Cramér‐Rao lower bound of each parameter estimate was proposed and tested in a phantom experiment. An extension of the protocol was implemented for brain imaging to return the rotationally invariant mean diffusivity (MD).ResultsIn an NiCl2‐doped agar gel phantom wherein urn:x-wiley:07403194:media:mrm26353:mrm26353-math-0003 ms, the parameter estimation errors were below 3% for PD and urn:x-wiley:07403194:media:mrm26353:mrm26353-math-0004 and below 7% for urn:x-wiley:07403194:media:mrm26353:mrm26353-math-0005 and D while the measured signal‐to‐noise ratio always exceeded 20. In the human brain, the in vivo parametric maps obtained were overall in reasonable agreement with gold standard measurements, despite a broadening of the distributions due to physiological motion.ConclusionWithin the optimization framework presented here, DW‐DESS images can be quantitatively interpreted to yield four intrinsic parameters of the tissue. Currently, the method is limited by the sensitivity of the DW‐DESS sequence in terms of physiological motion. Magn Reson Med 78:130–141, 2017. © 2016 International Society for Magnetic Resonance in Medicine
000861672 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000861672 588__ $$aDataset connected to CrossRef
000861672 7001_ $$0P:(DE-Juel1)138244$$aFarrher, Ezequiel$$b1$$ufzj
000861672 7001_ $$0P:(DE-Juel1)131766$$aGrinberg, Farida$$b2$$ufzj
000861672 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b3$$ufzj
000861672 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.26353$$gVol. 78, no. 1, p. 130 - 141$$n1$$p130 - 141$$tMagnetic resonance in medicine$$v78$$x0740-3194$$y2017
000861672 8564_ $$uhttps://juser.fz-juelich.de/record/861672/files/Gras_et_al-2017-Magnetic_Resonance_in_Medicine.pdf$$yRestricted
000861672 8564_ $$uhttps://juser.fz-juelich.de/record/861672/files/Gras_et_al-2017-Magnetic_Resonance_in_Medicine.pdf?subformat=pdfa$$xpdfa$$yRestricted
000861672 909CO $$ooai:juser.fz-juelich.de:861672$$pVDB
000861672 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138244$$aForschungszentrum Jülich$$b1$$kFZJ
000861672 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131766$$aForschungszentrum Jülich$$b2$$kFZJ
000861672 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b3$$kFZJ
000861672 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000861672 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000861672 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2017
000861672 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861672 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861672 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861672 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000861672 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861672 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861672 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000861672 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000861672 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000861672 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000861672 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000861672 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000861672 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000861672 980__ $$ajournal
000861672 980__ $$aVDB
000861672 980__ $$aI:(DE-Juel1)INM-4-20090406
000861672 980__ $$aI:(DE-Juel1)INM-11-20170113
000861672 980__ $$aI:(DE-82)080010_20140620
000861672 980__ $$aUNRESTRICTED