001     861672
005     20210130000934.0
024 7 _ |a 10.1002/mrm.26353
|2 doi
024 7 _ |a 0740-3194
|2 ISSN
024 7 _ |a 1522-2594
|2 ISSN
024 7 _ |a pmid:27476684
|2 pmid
024 7 _ |a WOS:000403803900013
|2 WOS
037 _ _ |a FZJ-2019-02109
082 _ _ |a 610
100 1 _ |a Gras, Vincent
|0 P:(DE-Juel1)131765
|b 0
|e Corresponding author
245 _ _ |a Diffusion-weighted DESS protocol optimization for simultaneous mapping of the mean diffusivity, proton density and relaxation times at 3 Tesla
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1553882494_25990
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a PurposeTo design a general framework for the optimization of an MRI protocol based on the the diffusion‐weighted dual‐echo steady‐state (DW‐DESS) sequence, enabling quantitative and simultaneous mapping of proton density (PD), relaxation times urn:x-wiley:07403194:media:mrm26353:mrm26353-math-0001 and urn:x-wiley:07403194:media:mrm26353:mrm26353-math-0002 and diffusion coefficient D.MethodsA parameterization of the DW‐DESS sequence minimizing the Cramér‐Rao lower bound of each parameter estimate was proposed and tested in a phantom experiment. An extension of the protocol was implemented for brain imaging to return the rotationally invariant mean diffusivity (MD).ResultsIn an NiCl2‐doped agar gel phantom wherein urn:x-wiley:07403194:media:mrm26353:mrm26353-math-0003 ms, the parameter estimation errors were below 3% for PD and urn:x-wiley:07403194:media:mrm26353:mrm26353-math-0004 and below 7% for urn:x-wiley:07403194:media:mrm26353:mrm26353-math-0005 and D while the measured signal‐to‐noise ratio always exceeded 20. In the human brain, the in vivo parametric maps obtained were overall in reasonable agreement with gold standard measurements, despite a broadening of the distributions due to physiological motion.ConclusionWithin the optimization framework presented here, DW‐DESS images can be quantitatively interpreted to yield four intrinsic parameters of the tissue. Currently, the method is limited by the sensitivity of the DW‐DESS sequence in terms of physiological motion. Magn Reson Med 78:130–141, 2017. © 2016 International Society for Magnetic Resonance in Medicine
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Farrher, Ezequiel
|0 P:(DE-Juel1)138244
|b 1
|u fzj
700 1 _ |a Grinberg, Farida
|0 P:(DE-Juel1)131766
|b 2
|u fzj
700 1 _ |a Shah, N. J.
|0 P:(DE-Juel1)131794
|b 3
|u fzj
773 _ _ |a 10.1002/mrm.26353
|g Vol. 78, no. 1, p. 130 - 141
|0 PERI:(DE-600)1493786-4
|n 1
|p 130 - 141
|t Magnetic resonance in medicine
|v 78
|y 2017
|x 0740-3194
856 4 _ |u https://juser.fz-juelich.de/record/861672/files/Gras_et_al-2017-Magnetic_Resonance_in_Medicine.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/861672/files/Gras_et_al-2017-Magnetic_Resonance_in_Medicine.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:861672
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)138244
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131766
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131794
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MAGN RESON MED : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 1
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21