

SEARCH FOR ELECTRIC DIPOLE MOMENTS AT COSY IN JÜLICH

Spin tracking simulations using Bmad

19.03.2019 I VERA PONCZA on behalf of the JEDI collaboration

CONTENT

- Electric dipole moments (EDM)
- Measurement method
- Simulation results and comparison to measurement
- Summary & Outlook

MATTER ANTIMATTER ASYMMETRY

Big Bang

Equal amount of matter & antimatter

Early Universe

Preference of matter

Sakharov criteria:

- Baryon number violation
- No thermic equilibrium
- $\mathcal{C}, \mathcal{CP}$ violation

Today

Matter

Only matter

matter – antimatter radiation

Observed:

 $(6.14 \pm 0.25) \cdot 10^{-10}$

Standard Model:

 10^{-18}

Search for *CP* violation beyond the Standard Model

ELECTRIC DIPOLE MOMENTS (EDMS)

d electric dipole moment

magnetic dipole moment

$$\mathcal{H} = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$$

$$\mathcal{P}: \mathcal{H} = -\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E}$$

$$\mathcal{T}: \mathcal{H} = -\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E}$$

- EDM: a permanent separation of positive and negative charge (vector along spin direction)
- Fundamental property of particles (like mass, charge, magnetic moment)
- Existence of EDM only possible if violation of time reversal and parity symmetry

What are we talking about?

Neutron: $d < 3 \cdot 10^{-26} e \cdot cm$

EDM MEASUREMENTS IN STORAGE RINGS

Example: pure electric ring

$$\frac{d\vec{S}}{dt} \propto \mathbf{d} \cdot \left(\vec{E} + c\vec{\beta} \times \vec{B} - A \vec{\beta} \left(\vec{\beta} \cdot \vec{E} \right) \right) \times \vec{S}$$

Basic idea:

- Inject particles with $\vec{S} \parallel \vec{p}$
- Use storage ring as particle trap
- Interaction of EDM with electromagnetic fields
- For $\vec{d} \neq 0$: spin rotates out of horizontal plane
- Measure: build-up of **vertical polarization** $(\phi \propto |\vec{d}|)$
- Different methods possible: pure E-field, pure B-field, combined versions

COOLER SYNCHROTRON COSY IN JÜLICH

- Polarized protons & deuterons
- Current experiments with deuterons at p = 970 MeV/c
- Measuring polarization with a polarimeter

 Special device necessary in order to measure the EDM: RF Wien filter

RESONANT WIEN FILTER METHOD

COSY: pure magnetic ring without RF Wien filter

$$\frac{d\vec{S}}{dt} = \left(\overrightarrow{\Omega}_{MDM} + \overrightarrow{\Omega}_{EDM}\right) \times \vec{S} = \left(\frac{q}{m}G\vec{B} + \frac{q\eta}{2m}\vec{\beta} \times \vec{B}\right) \times \vec{S} \quad \text{with} \quad \vec{d} = \eta \cdot \frac{q}{2mc}\vec{S}$$

- Vertical fields
- $\vec{S} \parallel \vec{p}$
- Spin rotates in horizontal plane
- $\vec{d} \neq 0$: oscillating vertical spin build-up

No net EDM effect

Page 7

RESONANT WIEN FILTER METHOD

- Aim: prevent averaging out of EDM signal
- RF device used to accumulate the EDM signal:
 - \checkmark Radial electric field: $E_x \sim \cos(\omega t + \varphi)$
 - ✓ Vertical magnetic field: $B_v \sim \cos(\omega t + \varphi)$
- Additional time dependent phase advance each turn
- Wien filter mode: Lorentz force vanishes
 - → no beam perturbation
- RF frequency tuned to horizontal spin precession frequency ($v_s \approx -0.161/\text{turn}$)

SYSTEMATIC EFFECTS

- Systematic effects in the ring lead to EDM-like signals
- Invariant spin axis tilts due to radial and longitudinal magnetic fields
- Especially radial B-fields lead to vertical spin build-up
- Simulations needed to separate systematic effects from real EDM signal

$$\eta = 0.0001$$
$$(d \approx 5 \cdot 10^{-19} e \cdot cm)$$

 $\eta = 0$ + random QP misalignments $(\mu = 0 \text{ mm and } \sigma = 1 \text{ mm}$ $(\sigma = 1 \text{ mrad}))$

turn

MEASUREMENT METHOD

EDM resonance strength

$$\varepsilon_{EDM} = \frac{\Omega_{Py}}{\Omega_{rev}}$$
 and $\varepsilon_{EDM}^2 \propto A(\phi_{WF} - \phi_0)^2 + B(\chi_{Sol1} + \chi_0)^2$

 $\Omega_{P_{oldsymbol{
u}}}$ Angular frequency of vertical polarization oscillation

 Ω_{rev} Orbital angular frequency

Wien Filter rotation angle ϕ_{WF}

Spin rotation angle of Solenoid 1 χ_{Sol1}

Basic idea:

- Manipulating the spin by
 - rotating the Wien filter (ϕ_{WF})
 - longitudinal B-field of a Solenoid (χ_{Sol1})
- Fitting point of minimal resonance strength (ϕ_0, χ_0)
- Fit parameter ϕ_0 is a measure of the EDM magnitude + systematic effects

Page 10

SIMULATION INCLUDING MAGNET MISALIGNMENTS

Spin tracking simulations using Bmad Software Library

$$\phi_0^{fit} = -0.32531 \pm 0.01764 \text{ mrad}$$

$$\phi_0^{\it theo} = -0.32127 \, {\rm mrad}$$

Code works

$$\phi_0^{fit} = 0.15328 \pm 0.01764 \text{ mrad}$$
 $\phi_0^{measured} = -3.42 \pm 0.28 \text{ mrad}$

SUMMARY

- EDMs as candidate for physics beyond the Standard Model
- RF device was developed and is already installed and under test
- Systematic effects have to be investigated by simulations (Bmad software library + extensions)
- Simulations so far include magnet misalignments
- The results can not fully explain the measurement

OUTLOOK

- Additional systematic effects have to be considered and implemented
- Take measurement and position uncertainties of magnet positions into account
- Build a realistic simulation model in order to support the data analysis

THANK YOU

