000861679 001__ 861679
000861679 005__ 20210130000936.0
000861679 0247_ $$2doi$$a10.1016/j.mri.2018.11.018
000861679 0247_ $$2ISSN$$a0730-725X
000861679 0247_ $$2ISSN$$a1873-5894
000861679 0247_ $$2pmid$$apmid:30500347
000861679 0247_ $$2WOS$$aWOS:000458096100041
000861679 037__ $$aFZJ-2019-02116
000861679 082__ $$a610
000861679 1001_ $$0P:(DE-Juel1)142359$$aZhang, Ke$$b0
000861679 245__ $$aDual-contrast pCASL using simultaneous gradient-echo/spin-echo multiband EPI
000861679 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000861679 3367_ $$2DRIVER$$aarticle
000861679 3367_ $$2DataCite$$aOutput Types/Journal article
000861679 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582020283_32444
000861679 3367_ $$2BibTeX$$aARTICLE
000861679 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861679 3367_ $$00$$2EndNote$$aJournal Article
000861679 520__ $$aA 2D gradient-echo EPI is commonly employed for arterial spin labeling (ASL) readout to achieve fast whole brain coverage measurements. However, such a readout suffers from susceptibility artifacts induced by magnetic field inhomogeneities. To reduce these susceptibility effects, single–shot spin-echo EPI was proposed to be used for acquisitions in continuous ASL (CASL). To minimize functional and physiological variations, a gradient-echo (GE)/spin-echo (SE) dual-echo EPI readout of the CASL sequence is needed for a comparison between GE- and SE-based determination of cerebral blood flow (CBF). In this study, we employed a simultaneous GE/SE multiband EPI as the readout of a pseudo-CASL (pCASL) sequence. Motor cortex activations derived from a finger-tapping task and functional networks from resting state fMRI were compared for both GE and SE contrasts. Direct comparison of SE and GE contrasts revealed that GE ASL provides an improved sensitivity of functional activity in finger-tapping and in resting-state imaging. SE ASL, on the other hand, suffered less from susceptibility artifacts induced by magnetic field inhomogeneities and pulsatile flow artifacts.
000861679 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000861679 588__ $$aDataset connected to CrossRef
000861679 7001_ $$0P:(DE-HGF)0$$aSturm, Volker J.$$b1
000861679 7001_ $$0P:(DE-HGF)0$$aBuschle, Lukas R.$$b2
000861679 7001_ $$0P:(DE-HGF)0$$aHahn, Artur$$b3
000861679 7001_ $$0P:(DE-HGF)0$$aYun, Seong Dae$$b4
000861679 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b5
000861679 7001_ $$0P:(DE-HGF)0$$aBendszus, Martin$$b6
000861679 7001_ $$0P:(DE-HGF)0$$aHeiland, Sabine$$b7
000861679 7001_ $$0P:(DE-HGF)0$$aSchlemmer, Heinz-Peter$$b8
000861679 7001_ $$0P:(DE-HGF)0$$aZiener, Christian H.$$b9
000861679 7001_ $$0P:(DE-HGF)0$$aKurz, Felix T.$$b10$$eCorresponding author
000861679 773__ $$0PERI:(DE-600)1500646-3$$a10.1016/j.mri.2018.11.018$$gVol. 57, p. 359 - 367$$p359 - 367$$tMagnetic resonance imaging$$v57$$x0730-725X$$y2019
000861679 909CO $$ooai:juser.fz-juelich.de:861679$$pVDB
000861679 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a INM 4$$b4
000861679 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b5$$kFZJ
000861679 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000861679 9141_ $$y2019
000861679 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000861679 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861679 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000861679 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON IMAGING : 2017
000861679 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861679 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000861679 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000861679 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861679 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000861679 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861679 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861679 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000861679 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000861679 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000861679 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000861679 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000861679 980__ $$ajournal
000861679 980__ $$aVDB
000861679 980__ $$aI:(DE-Juel1)INM-4-20090406
000861679 980__ $$aI:(DE-Juel1)INM-11-20170113
000861679 980__ $$aI:(DE-82)080010_20140620
000861679 980__ $$aUNRESTRICTED