000861706 001__ 861706
000861706 005__ 20210130000943.0
000861706 0247_ $$2doi$$a10.1021/acs.langmuir.8b02109
000861706 0247_ $$2ISSN$$a0743-7463
000861706 0247_ $$2ISSN$$a1520-5827
000861706 0247_ $$2pmid$$apmid:30071720
000861706 0247_ $$2WOS$$aWOS:000443524300027
000861706 0247_ $$2altmetric$$aaltmetric:46499344
000861706 037__ $$aFZJ-2019-02136
000861706 082__ $$a540
000861706 1001_ $$0P:(DE-HGF)0$$aBlayo, Camille$$b0
000861706 245__ $$aUnlocking Structure–Self-Assembly Relationships in Cationic Azobenzene Photosurfactants
000861706 260__ $$aWashington, DC$$bACS Publ.$$c2018
000861706 3367_ $$2DRIVER$$aarticle
000861706 3367_ $$2DataCite$$aOutput Types/Journal article
000861706 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1553776677_24627
000861706 3367_ $$2BibTeX$$aARTICLE
000861706 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861706 3367_ $$00$$2EndNote$$aJournal Article
000861706 520__ $$aAzobenzene photosurfactants are light-responsive amphiphiles that have garnered significant attention for diverse applications including delivery and sorting systems, phase transfer catalysis, and foam drainage. The azobenzene chromophore changes both its polarity and conformation (trans–cis isomerization) in response to UV light, while the amphiphilic structure drives self-assembly. Detailed understanding of the inherent relationship between the molecular structure, physicochemical behavior, and micellar arrangement of azobenzene photosurfactants is critical to their usefulness. Here, we investigate the key structure–function–assembly relationships in the popular cationic alkylazobenzene trimethylammonium bromide (AzoTAB) family of photosurfactants. We show that subtle changes in the surfactant structure (alkyl tail, spacer length) can lead to large variations in the critical micelle concentration, particularly in response to light, as determined by surface tensiometry and dynamic light scattering. Small-angle neutron scattering studies also reveal the formation of more diverse micellar aggregate structures (ellipsoids, cylinders, spheres) than predicted based on simple packing parameters. The results suggest that whereas the azobenzene core resides in the effective hydrophobic segment in the trans-isomer, it forms part of the effective hydrophilic segment in the cis-isomer because of the dramatic conformational and polarity changes induced by photoisomerization. The extent of this shift in the hydrophobic–hydrophilic balance is determined by the separation between the azobenzene core and the polar head group in the molecular structure. Our findings show that judicious design of the AzoTAB structure enables selective tailoring of the surfactant properties in response to light, such that they can be exploited and controlled in a reliable fashion.
000861706 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000861706 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000861706 588__ $$aDataset connected to CrossRef
000861706 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000861706 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x0
000861706 693__ $$0EXP:(DE-MLZ)External-20140101$$5EXP:(DE-MLZ)External-20140101$$eMeasurement at external facility$$x0
000861706 7001_ $$0P:(DE-Juel1)171614$$aHouston, Judith E.$$b1
000861706 7001_ $$0P:(DE-HGF)0$$aKing, Stephen M.$$b2
000861706 7001_ $$00000-0003-2956-4857$$aEvans, Rachel C.$$b3$$eCorresponding author
000861706 773__ $$0PERI:(DE-600)2005937-1$$a10.1021/acs.langmuir.8b02109$$gVol. 34, no. 34, p. 10123 - 10134$$n34$$p10123 - 10134$$tLangmuir$$v34$$x1520-5827$$y2018
000861706 8564_ $$uhttps://juser.fz-juelich.de/record/861706/files/acs.langmuir.8b02109.pdf$$yRestricted
000861706 8564_ $$uhttps://juser.fz-juelich.de/record/861706/files/acs.langmuir.8b02109.pdf?subformat=pdfa$$xpdfa$$yRestricted
000861706 909CO $$ooai:juser.fz-juelich.de:861706$$pVDB$$pVDB:MLZ
000861706 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171614$$aForschungszentrum Jülich$$b1$$kFZJ
000861706 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000861706 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000861706 9141_ $$y2019
000861706 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000861706 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861706 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861706 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000861706 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLANGMUIR : 2017
000861706 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000861706 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000861706 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861706 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000861706 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861706 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861706 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000861706 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000861706 920__ $$lyes
000861706 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000861706 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000861706 980__ $$ajournal
000861706 980__ $$aVDB
000861706 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000861706 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000861706 980__ $$aUNRESTRICTED