000861707 001__ 861707
000861707 005__ 20210131030920.0
000861707 0247_ $$2doi$$a10.1007/s11104-019-03993-3
000861707 0247_ $$2WOS$$aWOS:000468540800007
000861707 0247_ $$2altmetric$$aaltmetric:59621713
000861707 037__ $$aFZJ-2019-02137
000861707 082__ $$a580
000861707 1001_ $$0P:(DE-Juel1)168106$$aMorandage, Tharaka Shehan$$b0$$eCorresponding author$$ufzj
000861707 245__ $$aParameter sensitivity analysis of a root system architecture model based on virtual field sampling
000861707 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2019
000861707 3367_ $$2DRIVER$$aarticle
000861707 3367_ $$2DataCite$$aOutput Types/Journal article
000861707 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1556006038_23035
000861707 3367_ $$2BibTeX$$aARTICLE
000861707 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861707 3367_ $$00$$2EndNote$$aJournal Article
000861707 520__ $$aAimsTraits of the plant root system architecture (RSA) play a key role in crop performance. Therefore, architectural root traits are becoming increasingly important in plant phenotyping. In this study, we use a mathematical model to investigate the sensitivity of characteristic root system measures, obtained from different classical field root sampling schemes, to RSA parameters.MethodsRoot systems of wheat and maize were simulated and sampled virtually to mimic real field experiments using the root system architecture (RSA) model CRootBox. By means of a sensitivity analysis, we found RSA parameters that significantly influenced the virtual field sampling results. To identify correlations between sensitivities, we carried out a principal component analysis.ResultsWe found that the parameters of zero order roots are the most sensitive, and parameters of higher order roots are less sensitive. Moreover, different characteristic root system measures showed different sensitivity to RSA parameters. RSA parameters that could be derived independently from different types of field observations were identified.ConclusionsSelection of characteristic root system measures and parameters is essential to reduce the problem of parameter equifinality in inverse modeling with multi-parameter models and is an important step in the characterization of root traits from field observations.
000861707 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000861707 7001_ $$0P:(DE-Juel1)157922$$aSchnepf, Andrea$$b1$$ufzj
000861707 7001_ $$0P:(DE-Juel1)129477$$aJavaux, Mathieu$$b2$$ufzj
000861707 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b3$$ufzj
000861707 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b4$$ufzj
000861707 773__ $$0PERI:(DE-600)1478535-3$$a10.1007/s11104-019-03993-3$$n1-2$$p101-126$$tPlant and soil$$v438$$x0032-079X$$y2019
000861707 8564_ $$uhttps://juser.fz-juelich.de/record/861707/files/Morandage2019_Article_ParameterSensitivityAnalysisOf-1.pdf$$yRestricted
000861707 8564_ $$uhttps://juser.fz-juelich.de/record/861707/files/Morandage2019_Article_ParameterSensitivityAnalysisOf-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000861707 909CO $$ooai:juser.fz-juelich.de:861707$$pVDB:Earth_Environment$$pVDB
000861707 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168106$$aForschungszentrum Jülich$$b0$$kFZJ
000861707 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157922$$aForschungszentrum Jülich$$b1$$kFZJ
000861707 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129477$$aForschungszentrum Jülich$$b2$$kFZJ
000861707 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b3$$kFZJ
000861707 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich$$b4$$kFZJ
000861707 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000861707 9141_ $$y2019
000861707 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000861707 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000861707 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT SOIL : 2017
000861707 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861707 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861707 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000861707 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000861707 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000861707 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861707 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000861707 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861707 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861707 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000861707 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000861707 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000861707 920__ $$lyes
000861707 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000861707 980__ $$ajournal
000861707 980__ $$aVDB
000861707 980__ $$aI:(DE-Juel1)IBG-3-20101118
000861707 980__ $$aUNRESTRICTED