001     861707
005     20210131030920.0
024 7 _ |a 10.1007/s11104-019-03993-3
|2 doi
024 7 _ |a WOS:000468540800007
|2 WOS
024 7 _ |a altmetric:59621713
|2 altmetric
037 _ _ |a FZJ-2019-02137
082 _ _ |a 580
100 1 _ |a Morandage, Tharaka Shehan
|0 P:(DE-Juel1)168106
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Parameter sensitivity analysis of a root system architecture model based on virtual field sampling
260 _ _ |a Dordrecht [u.a.]
|c 2019
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1556006038_23035
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a AimsTraits of the plant root system architecture (RSA) play a key role in crop performance. Therefore, architectural root traits are becoming increasingly important in plant phenotyping. In this study, we use a mathematical model to investigate the sensitivity of characteristic root system measures, obtained from different classical field root sampling schemes, to RSA parameters.MethodsRoot systems of wheat and maize were simulated and sampled virtually to mimic real field experiments using the root system architecture (RSA) model CRootBox. By means of a sensitivity analysis, we found RSA parameters that significantly influenced the virtual field sampling results. To identify correlations between sensitivities, we carried out a principal component analysis.ResultsWe found that the parameters of zero order roots are the most sensitive, and parameters of higher order roots are less sensitive. Moreover, different characteristic root system measures showed different sensitivity to RSA parameters. RSA parameters that could be derived independently from different types of field observations were identified.ConclusionsSelection of characteristic root system measures and parameters is essential to reduce the problem of parameter equifinality in inverse modeling with multi-parameter models and is an important step in the characterization of root traits from field observations.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
700 1 _ |a Schnepf, Andrea
|0 P:(DE-Juel1)157922
|b 1
|u fzj
700 1 _ |a Javaux, Mathieu
|0 P:(DE-Juel1)129477
|b 2
|u fzj
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 3
|u fzj
700 1 _ |a Vanderborght, Jan
|0 P:(DE-Juel1)129548
|b 4
|u fzj
773 _ _ |a 10.1007/s11104-019-03993-3
|0 PERI:(DE-600)1478535-3
|n 1-2
|p 101-126
|t Plant and soil
|v 438
|y 2019
|x 0032-079X
856 4 _ |u https://juser.fz-juelich.de/record/861707/files/Morandage2019_Article_ParameterSensitivityAnalysisOf-1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/861707/files/Morandage2019_Article_ParameterSensitivityAnalysisOf-1.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:861707
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168106
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157922
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129477
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129548
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLANT SOIL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21