000861711 001__ 861711
000861711 005__ 20240313103128.0
000861711 0247_ $$2Handle$$a2128/22257
000861711 037__ $$aFZJ-2019-02141
000861711 041__ $$aEnglish
000861711 1001_ $$0P:(DE-Juel1)172073$$aSridhar, Shashwat$$b0$$eCorresponding author$$ufzj
000861711 1112_ $$a13th Göttingen Meeting of the German Neuroscience Society$$cGöttingen$$d2019-03-19 - 2019-03-23$$gNWG$$wGermany
000861711 245__ $$aSWAN: A tool to track single units across consecutive electrophysiological recordings
000861711 260__ $$c2019
000861711 3367_ $$033$$2EndNote$$aConference Paper
000861711 3367_ $$2BibTeX$$aINPROCEEDINGS
000861711 3367_ $$2DRIVER$$aconferenceObject
000861711 3367_ $$2ORCID$$aCONFERENCE_POSTER
000861711 3367_ $$2DataCite$$aOutput Types/Conference Poster
000861711 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1560776606_19081$$xAfter Call
000861711 520__ $$aElectrophysiological experiments often involve the measurement of extracellular analog voltage signals from brain tissue using implanted microelectrodes. The spiking activity of neurons in the direct vicinity of an electrode is captured as short-lasting voltage deflections. Some of the deflections are action potentials (spikes) of neurons close to the electrode tip [1]. A crucial first step in the analysis of such data is the extraction of spikes and their assortment into clusters corresponding to contributions from different putative single neurons, or in short ‘units’ (spike sorting) [1, 2]. The sorting compares the shape of waveforms and the spiking characteristics. With chronically implanted electrodes, spiking activity is recorded for several months over multiple sessions. It is not clear if each electrode detects identical units over the entire course of an experiment. However, this knowledge would help to monitor long-term changes of neural activity during training for a task. In practice, some single units disappear, (re-)appear or progressively change their spike shape, likely due to small movements of the electrode and/or tissue growth. Thus, it becomes a challenge to keep track of identical units across consecutive chronic recordings [3, 4]. In the absence of such a tracking of neurons across sessions, detected units in one session are assumed to be independent of those in other sessions of the experiment. They may thus be considered more than once in analyses of several sessions, and bias statistics across sessions.Here we present the Sequential Waveform Analyzer (SWAN) -  an open-source tool developed to track individual units across sessions, but also to identify units that are different. It provides a graphical user interface (GUI) to visualize and relate spike-sorted data across multiple sessions. The configurable user interface is divided into several windows (see Figure). In each window, a certain set of features (e.g., mean waveforms, inter-spike interval histograms, principal component analysis of mean waveforms, firing rate profiles) are compared between different units and across multiple sessions. Each set of similar units across sessions is then assigned one global unit ID, represented by one common color across all windows. Thus, we visualize the tracking of a certain unit across consecutive sessions. The assignment of units to global unit IDs is performed by published [3,4] and newly developed automatic algorithms, and can be easily edited by the experimenter in the GUI. We demonstrate the capabilities of SWAN and practically illustrate its application on large-scale recordings from macaque monkey motor cortex [5].Acknowledgements: EU Horizon 2020 Framework Programme for Research and Innovation under Specific Grant Agreements No. 720270 and No. 785907 (Human Brain Projects SGA1 and SGA2); DFG Grants DE 2175/2-1 and GR 1753/4-2 Priority Program (SPP 1665); International Associated Laboratory (LIA) “Vision for Action” between CNRS and Aix-Marseille Univ, Marseille, France, and Research Centre Juelich, Germany. Christoph Gollan created the initial version of SWAN.References:1. Einevoll, G. T. et al. Cur Opinion Neurobiol 22, 11 (2012).2. Buzsáki, G. Nat Neurosci 7, 446 (2004).3. Dickey, A. S. et al. J Neurophys 102, 1331 (2012).4. Fraser, G. W. et al. J Neurophys 107, 1970 (2012).5. Brochier, T. et al. Sci Data 5, 180055 (2018).
000861711 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000861711 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x1
000861711 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x2
000861711 536__ $$0G:(GEPRIS)238707842$$aDFG project 238707842 - Kausative Mechanismen mesoskopischer Aktivitätsmuster in der auditorischen Kategorien-Diskrimination (238707842)$$c238707842$$x3
000861711 536__ $$0G:(GEPRIS)322093511$$aDFG project 322093511 - Kognitive Leistung als Ergebnis koordinierter neuronaler Aktivität in unreifen präfrontal-hippokampalen Netzwerken (322093511)$$c322093511$$x4
000861711 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x5
000861711 7001_ $$0P:(DE-Juel1)161462$$aYegenoglu, Alper$$b1$$ufzj
000861711 7001_ $$0P:(DE-Juel1)168479$$aVoges, Nicole$$b2$$ufzj
000861711 7001_ $$0P:(DE-HGF)0$$aBrochier, Thomas$$b3
000861711 7001_ $$0P:(DE-Juel1)172858$$aRiehle, Alexa$$b4$$ufzj
000861711 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b5$$ufzj
000861711 7001_ $$0P:(DE-Juel1)144807$$aDenker, Michael$$b6$$ufzj
000861711 8564_ $$uhttps://juser.fz-juelich.de/record/861711/files/SWAN%20poster.pdf$$yOpenAccess
000861711 8564_ $$uhttps://juser.fz-juelich.de/record/861711/files/SWAN%20poster.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000861711 909CO $$ooai:juser.fz-juelich.de:861711$$pec_fundedresources$$pdriver$$pVDB$$popen_access$$popenaire
000861711 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172073$$aForschungszentrum Jülich$$b0$$kFZJ
000861711 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161462$$aForschungszentrum Jülich$$b1$$kFZJ
000861711 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168479$$aForschungszentrum Jülich$$b2$$kFZJ
000861711 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172858$$aForschungszentrum Jülich$$b4$$kFZJ
000861711 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b5$$kFZJ
000861711 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144807$$aForschungszentrum Jülich$$b6$$kFZJ
000861711 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000861711 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000861711 9141_ $$y2019
000861711 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000861711 920__ $$lno
000861711 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000861711 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000861711 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000861711 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x3
000861711 9801_ $$aFullTexts
000861711 980__ $$aposter
000861711 980__ $$aVDB
000861711 980__ $$aI:(DE-Juel1)INM-6-20090406
000861711 980__ $$aI:(DE-Juel1)IAS-6-20130828
000861711 980__ $$aI:(DE-Juel1)INM-10-20170113
000861711 980__ $$aI:(DE-Juel1)JSC-20090406
000861711 980__ $$aUNRESTRICTED
000861711 981__ $$aI:(DE-Juel1)IAS-6-20130828