001     861711
005     20240313103128.0
024 7 _ |a 2128/22257
|2 Handle
037 _ _ |a FZJ-2019-02141
041 _ _ |a English
100 1 _ |a Sridhar, Shashwat
|0 P:(DE-Juel1)172073
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 13th Göttingen Meeting of the German Neuroscience Society
|g NWG
|c Göttingen
|d 2019-03-19 - 2019-03-23
|w Germany
245 _ _ |a SWAN: A tool to track single units across consecutive electrophysiological recordings
260 _ _ |c 2019
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1560776606_19081
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Electrophysiological experiments often involve the measurement of extracellular analog voltage signals from brain tissue using implanted microelectrodes. The spiking activity of neurons in the direct vicinity of an electrode is captured as short-lasting voltage deflections. Some of the deflections are action potentials (spikes) of neurons close to the electrode tip [1]. A crucial first step in the analysis of such data is the extraction of spikes and their assortment into clusters corresponding to contributions from different putative single neurons, or in short ‘units’ (spike sorting) [1, 2]. The sorting compares the shape of waveforms and the spiking characteristics. With chronically implanted electrodes, spiking activity is recorded for several months over multiple sessions. It is not clear if each electrode detects identical units over the entire course of an experiment. However, this knowledge would help to monitor long-term changes of neural activity during training for a task. In practice, some single units disappear, (re-)appear or progressively change their spike shape, likely due to small movements of the electrode and/or tissue growth. Thus, it becomes a challenge to keep track of identical units across consecutive chronic recordings [3, 4]. In the absence of such a tracking of neurons across sessions, detected units in one session are assumed to be independent of those in other sessions of the experiment. They may thus be considered more than once in analyses of several sessions, and bias statistics across sessions.Here we present the Sequential Waveform Analyzer (SWAN) - an open-source tool developed to track individual units across sessions, but also to identify units that are different. It provides a graphical user interface (GUI) to visualize and relate spike-sorted data across multiple sessions. The configurable user interface is divided into several windows (see Figure). In each window, a certain set of features (e.g., mean waveforms, inter-spike interval histograms, principal component analysis of mean waveforms, firing rate profiles) are compared between different units and across multiple sessions. Each set of similar units across sessions is then assigned one global unit ID, represented by one common color across all windows. Thus, we visualize the tracking of a certain unit across consecutive sessions. The assignment of units to global unit IDs is performed by published [3,4] and newly developed automatic algorithms, and can be easily edited by the experimenter in the GUI. We demonstrate the capabilities of SWAN and practically illustrate its application on large-scale recordings from macaque monkey motor cortex [5].Acknowledgements: EU Horizon 2020 Framework Programme for Research and Innovation under Specific Grant Agreements No. 720270 and No. 785907 (Human Brain Projects SGA1 and SGA2); DFG Grants DE 2175/2-1 and GR 1753/4-2 Priority Program (SPP 1665); International Associated Laboratory (LIA) “Vision for Action” between CNRS and Aix-Marseille Univ, Marseille, France, and Research Centre Juelich, Germany. Christoph Gollan created the initial version of SWAN.References:1. Einevoll, G. T. et al. Cur Opinion Neurobiol 22, 11 (2012).2. Buzsáki, G. Nat Neurosci 7, 446 (2004).3. Dickey, A. S. et al. J Neurophys 102, 1331 (2012).4. Fraser, G. W. et al. J Neurophys 107, 1970 (2012).5. Brochier, T. et al. Sci Data 5, 180055 (2018).
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|x 0
|f POF III
536 _ _ |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)
|0 G:(EU-Grant)720270
|c 720270
|x 1
|f H2020-Adhoc-2014-20
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|x 2
|f H2020-SGA-FETFLAG-HBP-2017
536 _ _ |a DFG project 238707842 - Kausative Mechanismen mesoskopischer Aktivitätsmuster in der auditorischen Kategorien-Diskrimination (238707842)
|0 G:(GEPRIS)238707842
|c 238707842
|x 3
536 _ _ |a DFG project 322093511 - Kognitive Leistung als Ergebnis koordinierter neuronaler Aktivität in unreifen präfrontal-hippokampalen Netzwerken (322093511)
|0 G:(GEPRIS)322093511
|c 322093511
|x 4
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|x 5
|f POF III
700 1 _ |a Yegenoglu, Alper
|0 P:(DE-Juel1)161462
|b 1
|u fzj
700 1 _ |a Voges, Nicole
|0 P:(DE-Juel1)168479
|b 2
|u fzj
700 1 _ |a Brochier, Thomas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Riehle, Alexa
|0 P:(DE-Juel1)172858
|b 4
|u fzj
700 1 _ |a Grün, Sonja
|0 P:(DE-Juel1)144168
|b 5
|u fzj
700 1 _ |a Denker, Michael
|0 P:(DE-Juel1)144807
|b 6
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/861711/files/SWAN%20poster.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/861711/files/SWAN%20poster.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:861711
|p openaire
|p open_access
|p VDB
|p driver
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)172073
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161462
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)168479
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172858
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144168
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)144807
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2019
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 3
980 1 _ |a FullTexts
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21