000861788 001__ 861788
000861788 005__ 20210130001036.0
000861788 0247_ $$2doi$$a10.1063/1.5042344
000861788 0247_ $$2ISSN$$a0021-8979
000861788 0247_ $$2ISSN$$a0148-6349
000861788 0247_ $$2ISSN$$a1089-7550
000861788 0247_ $$2ISSN$$a1520-8850
000861788 0247_ $$2ISSN$$a2163-5102
000861788 0247_ $$2Handle$$a2128/21937
000861788 0247_ $$2WOS$$aWOS:000447148100004
000861788 0247_ $$2altmetric$$aaltmetric:49636561
000861788 037__ $$aFZJ-2019-02216
000861788 082__ $$a530
000861788 1001_ $$0P:(DE-Juel1)174091$$aRadelytskyi, Igor$$b0$$eCorresponding author$$ufzj
000861788 245__ $$aStructural, magnetic, and magnetocaloric properties of Fe$_7$Se$_8$ single crystals
000861788 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2018
000861788 3367_ $$2DRIVER$$aarticle
000861788 3367_ $$2DataCite$$aOutput Types/Journal article
000861788 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1553777414_27223
000861788 3367_ $$2BibTeX$$aARTICLE
000861788 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861788 3367_ $$00$$2EndNote$$aJournal Article
000861788 520__ $$aThe magnetocaloric effect has been studied in high quality single crystals of Fe7Se8 (3c type) grown by using Bridgman’s method. Magnetization and magnetocaloric effect measurements have been carried out in a magnetic field up to 5 T over the temperature range from 2 to 490 K. The spin reorientation transition from the easy c-axis to the easy c-plane, proceeding in an abrupt fashion, as a first-order phase transition, has been observed near the temperature TR ≈ 125 K. The magnetization curves in the vicinity of this transition were shown to have an S-shape with a clear hysteresis. The first order metamagnetic field induced transitions have been identified above and below TR. The conventional magnetocaloric effect related to the metamagnetic transitions has been found above TR, while below TR the inverse magnetocaloric effect was clearly seen. The existence of both kinds of magnetocaloric effect is important from the point of view of large rotating field entropy change in Fe7Se8 single crystals. The refrigeration capacity associated with a second order phase transition from the ferrimagnetic to the paramagnetic state at the Néel temperature TN ≈ 450 K was found to be weaker than that appearing near TR. The giant anisotropy of the magnetocaloric effect was related to the magnetic anisotropy of Fe7Se8 crystals. The one-ion model of the magnetocaloric effect has been developed and its predictions have been compared with experimental data.
000861788 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000861788 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x1
000861788 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x2
000861788 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x3
000861788 588__ $$aDataset connected to CrossRef
000861788 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0
000861788 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000861788 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000861788 7001_ $$00000-0002-2966-130X$$aAleshkevych, P.$$b1
000861788 7001_ $$0P:(DE-HGF)0$$aGawryluk, D. J.$$b2
000861788 7001_ $$0P:(DE-HGF)0$$aBerkowski, M.$$b3
000861788 7001_ $$00000-0002-9100-2938$$aZajarniuk, T.$$b4
000861788 7001_ $$0P:(DE-HGF)0$$aSzewczyk, A.$$b5
000861788 7001_ $$0P:(DE-HGF)0$$aGutowska, M.$$b6
000861788 7001_ $$0P:(DE-HGF)0$$aHawelek, L.$$b7
000861788 7001_ $$0P:(DE-HGF)0$$aWlodarczyk, P.$$b8
000861788 7001_ $$0P:(DE-HGF)0$$aFink-Finowicki, J.$$b9
000861788 7001_ $$0P:(DE-HGF)0$$aMinikayev, R.$$b10
000861788 7001_ $$0P:(DE-HGF)0$$aDiduszko, R.$$b11
000861788 7001_ $$0P:(DE-HGF)0$$aKonopelnyk, Y.$$b12
000861788 7001_ $$0P:(DE-HGF)0$$aKozłowski, M.$$b13
000861788 7001_ $$00000-0001-5636-5541$$aPuz´niak, R.$$b14
000861788 7001_ $$0P:(DE-HGF)0$$aSzymczak, H.$$b15
000861788 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/1.5042344$$gVol. 124, no. 14, p. 143902 -$$n14$$p143902 -$$tJournal of applied physics$$v124$$x1089-7550$$y2018
000861788 8564_ $$uhttps://juser.fz-juelich.de/record/861788/files/1.5042344.pdf$$yPublished on 2018-10-11. Available in OpenAccess from 2019-10-11.
000861788 8564_ $$uhttps://juser.fz-juelich.de/record/861788/files/1.5042344.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-10-11. Available in OpenAccess from 2019-10-11.
000861788 909CO $$ooai:juser.fz-juelich.de:861788$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000861788 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174091$$aForschungszentrum Jülich$$b0$$kFZJ
000861788 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000861788 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x1
000861788 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x2
000861788 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x3
000861788 9141_ $$y2019
000861788 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861788 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000861788 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000861788 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL PHYS : 2017
000861788 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861788 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000861788 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861788 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000861788 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000861788 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000861788 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000861788 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861788 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000861788 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000861788 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861788 920__ $$lyes
000861788 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000861788 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000861788 980__ $$ajournal
000861788 980__ $$aVDB
000861788 980__ $$aUNRESTRICTED
000861788 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000861788 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000861788 9801_ $$aFullTexts