000861799 001__ 861799
000861799 005__ 20210130001039.0
000861799 0247_ $$2doi$$a10.1103/PhysRevApplied.10.054025
000861799 0247_ $$2Handle$$a2128/21928
000861799 0247_ $$2WOS$$aWOS:000449792500003
000861799 037__ $$aFZJ-2019-02227
000861799 082__ $$a530
000861799 1001_ $$0P:(DE-HGF)0$$aDu, Nan$$b0$$eCorresponding author
000861799 245__ $$aField-Driven Hopping Transport of Oxygen Vacancies in Memristive Oxide Switches with Interface-Mediated Resistive Switching
000861799 260__ $$aCollege Park, Md. [u.a.]$$bAmerican Physical Society$$c2018
000861799 3367_ $$2DRIVER$$aarticle
000861799 3367_ $$2DataCite$$aOutput Types/Journal article
000861799 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1553754885_24627
000861799 3367_ $$2BibTeX$$aARTICLE
000861799 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861799 3367_ $$00$$2EndNote$$aJournal Article
000861799 520__ $$aWe investigate the hopping transport of positively charged mobile oxygen vacancies V+o in electroforming-free bipolar memristive BiFeO3 switches by conducting impedance spectroscopy and quasistatic state-test measurements. We demonstrate that BiFeO3 switches with mobile oxygen vacancies (V+o) and fixed substitutional Ti4+ donors on Fe3+ lattice sites close to the bottom electrode have a rectifying top electrode with an unflexible barrier height and a rectifying and/or nonrectifying bottom electrode with a flexible barrier height. The field-driven hopping transport of the oxygen vacancies determines the reconfiguration of the flexible barrier and the dynamics of the resistive switching. Average activation energies of 0.53 eV for trapping and of 0.31 eV for the release of oxygen vacancies by the Ti4+ donors during application of the SET and RESET excitation pulses are extracted, respectively. The larger activation energy during SET is experimentally verified by impedance spectroscopy measurements and evidences the local enhancement of the electrostatic potential profile at the bottom electrode due to the Ti4+ donors on Fe3+ lattice sites.
000861799 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000861799 588__ $$aDataset connected to CrossRef
000861799 7001_ $$0P:(DE-HGF)0$$aManjunath, Niveditha$$b1
000861799 7001_ $$0P:(DE-HGF)0$$aLi, Yuan$$b2
000861799 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b3
000861799 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b4
000861799 7001_ $$0P:(DE-HGF)0$$aLinn, Eike$$b5
000861799 7001_ $$0P:(DE-HGF)0$$aYou, Tiangui$$b6
000861799 7001_ $$0P:(DE-HGF)0$$aBürger, Danilo$$b7
000861799 7001_ $$0P:(DE-HGF)0$$aSkorupa, Ilona$$b8
000861799 7001_ $$0P:(DE-HGF)0$$aWalczyk, Damian$$b9
000861799 7001_ $$0P:(DE-HGF)0$$aWalczyk, Christian$$b10
000861799 7001_ $$0P:(DE-HGF)0$$aSchmidt, Oliver G.$$b11
000861799 7001_ $$0P:(DE-HGF)0$$aSchmidt, Heidemarie$$b12
000861799 773__ $$0PERI:(DE-600)2760310-6$$a10.1103/PhysRevApplied.10.054025$$gVol. 10, no. 5, p. 054025$$n5$$p054025$$tPhysical review applied$$v10$$x2331-7019$$y2018
000861799 8564_ $$uhttps://juser.fz-juelich.de/record/861799/files/PhysRevApplied.10.054025.pdf$$yOpenAccess
000861799 8564_ $$uhttps://juser.fz-juelich.de/record/861799/files/PhysRevApplied.10.054025.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000861799 909CO $$ooai:juser.fz-juelich.de:861799$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000861799 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b3$$kFZJ
000861799 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b4$$kFZJ
000861799 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000861799 9141_ $$y2019
000861799 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861799 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000861799 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV APPL : 2017
000861799 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861799 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861799 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000861799 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000861799 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000861799 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861799 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861799 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000861799 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000861799 980__ $$ajournal
000861799 980__ $$aVDB
000861799 980__ $$aUNRESTRICTED
000861799 980__ $$aI:(DE-Juel1)PGI-7-20110106
000861799 980__ $$aI:(DE-82)080009_20140620
000861799 9801_ $$aFullTexts