001     861801
005     20210130001040.0
024 7 _ |a 10.1002/adfm.201802834
|2 doi
024 7 _ |a 1057-9257
|2 ISSN
024 7 _ |a 1099-0712
|2 ISSN
024 7 _ |a 1616-301X
|2 ISSN
024 7 _ |a 1616-3028
|2 ISSN
024 7 _ |a 2128/21930
|2 Handle
024 7 _ |a WOS:000448257800003
|2 WOS
037 _ _ |a FZJ-2019-02229
082 _ _ |a 530
100 1 _ |a Lewin, Martin
|0 0000-0003-4036-2252
|b 0
245 _ _ |a Nanospectroscopy of Infrared Phonon Resonance Enables Local Quantification of Electronic Properties in Doped SrTiO 3 Ceramics
260 _ _ |a Weinheim
|c 2018
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1553755098_30668
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Among the novel materials for electronic applications and novel device concepts beyond classical Si‐based CMOS technology, SrTiO3 represents a prototype role model for functional oxide materials: It enables resistive switching, but can also form a 2D electron gas at its interface and thus enables tunable transistors. However, the interplay between charge carriers and defects in SrTiO3 is still under debate. Infrared spectroscopy offers the possibility to characterize structural and electronic properties of SrTiO3 in operando, but is hampered by the diffraction‐limited resolution. To overcome this limitation and obtain nanoscale IR spectra of donor‐doped Sr1‐xLaxTiO3 ceramics, scattering‐type scanning near‐field optical microscopy is applied. By exploiting plasmon–phonon coupling, the local electronic properties of doped SrTiO3 are quantified from a detailed spectroscopic analysis in the spectral range of the near‐field ‘phonon resonance’. Single crystal‐like mobility, an increase in charge carrier density N and an increase in ε∞ at grain boundaries (µ≈ 5.7 cm2 V−1s−1, N = 7.1 × 1019 cm−3, and ε∞ = 7.7) and local defects (µ≈ 5.4 cm2 V−1s−1, N = 1.3 × 1020 cm−3, and ε∞ = 8.8) are found. In future, subsurface quantification of defects and free charge carriers at interfaces and filaments in SrTiO3 can be envisioned.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Baeumer, Christoph
|0 P:(DE-Juel1)159254
|b 1
700 1 _ |a Gunkel, Felix
|0 P:(DE-Juel1)130677
|b 2
700 1 _ |a Schwedt, Alexander
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gaussmann, Fabian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Wueppen, Jochen
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Meuffels, Paul
|0 P:(DE-Juel1)130836
|b 6
700 1 _ |a Jungbluth, Bernd
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Mayer, Joachim
|0 P:(DE-Juel1)130824
|b 8
700 1 _ |a Dittmann, Regina
|0 P:(DE-Juel1)130620
|b 9
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 10
700 1 _ |a Taubner, Thomas
|0 0000-0002-0628-3043
|b 11
|e Corresponding author
773 _ _ |a 10.1002/adfm.201802834
|g Vol. 28, no. 42, p. 1802834 -
|0 PERI:(DE-600)2039420-2
|n 42
|p 1802834 -
|t Advanced functional materials
|v 28
|y 2018
|x 1616-301X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/861801/files/Lewin_et_al-2018-Advanced_Functional_Materials.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/861801/files/Lewin_et_al-2018-Advanced_Functional_Materials.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:861801
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)159254
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130677
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130836
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130824
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130620
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131022
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV FUNCT MATER : 2017
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ADV FUNCT MATER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21