000861807 001__ 861807
000861807 005__ 20250129094342.0
000861807 0247_ $$2doi$$a10.1039/C9CP00302A
000861807 0247_ $$2ISSN$$a1463-9076
000861807 0247_ $$2ISSN$$a1463-9084
000861807 0247_ $$2pmid$$apmid:30821806
000861807 0247_ $$2WOS$$aWOS:000462659300029
000861807 0247_ $$2altmetric$$aaltmetric:56299809
000861807 037__ $$aFZJ-2019-02235
000861807 082__ $$a540
000861807 1001_ $$0P:(DE-Juel1)161217$$aWang, Li-Ming$$b0$$eCorresponding author
000861807 245__ $$aManipulation of dipolar magnetism in low-dimensional iron oxide nanoparticle assemblies
000861807 260__ $$aCambridge$$bRSC Publ.$$c2019
000861807 3367_ $$2DRIVER$$aarticle
000861807 3367_ $$2DataCite$$aOutput Types/Journal article
000861807 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1553755600_29632
000861807 3367_ $$2BibTeX$$aARTICLE
000861807 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861807 3367_ $$00$$2EndNote$$aJournal Article
000861807 520__ $$aThe manipulation of magnetic states in nanoparticle supercrystals promises new pathways to design nanocrystalline magnetic materials and devices. Trench-patterned silicon substrates were used as templates to guide the self-assembly of iron oxide nanoparticles. Grazing incidence small angle X-ray scattering shows that the nanoparticles form a long-range ordered structure along the trench direction while in the direction perpendicular to the trenches, no coherent structure is observable. Electron holography provides evidence of an ordered magnetic state of nanoparticle moments in the remanent state after the application of a saturation magnetic field parallel to the trenches. However, a disordered magnetic state was observed in a perpendicular geometry. Hysteresis loops indicate that the nanoparticle moments form a superferromagnetic state for the geometry parallel to the trenches. Memory effect investigations reveal that the disordered magnetic state corresponds to a collective superspin glass state in the perpendicular geometry, while the superferromagnetic state in the parallel geometry suppresses the superspin glass state.
000861807 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000861807 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x1
000861807 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x2
000861807 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x3
000861807 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x4
000861807 588__ $$aDataset connected to CrossRef
000861807 7001_ $$0P:(DE-Juel1)169176$$aQdemat, Asma$$b1
000861807 7001_ $$0P:(DE-Juel1)145895$$aPetracic, Oleg$$b2
000861807 7001_ $$0P:(DE-Juel1)130754$$aKentzinger, Emmanuel$$b3
000861807 7001_ $$0P:(DE-Juel1)130928$$aRücker, Ulrich$$b4
000861807 7001_ $$0P:(DE-Juel1)165965$$aZheng, Fengshan$$b5
000861807 7001_ $$0P:(DE-Juel1)167381$$aLu, Penghan$$b6
000861807 7001_ $$0P:(DE-Juel1)145420$$aWei, Xiankui$$b7
000861807 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b8
000861807 7001_ $$0P:(DE-Juel1)130572$$aBrückel, Thomas$$b9
000861807 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C9CP00302A$$gVol. 21, no. 11, p. 6171 - 6177$$n11$$p6171 - 6177$$tPhysical chemistry, chemical physics$$v21$$x1463-9076$$y2019
000861807 8564_ $$uhttps://juser.fz-juelich.de/record/861807/files/c9cp00302a.pdf$$yRestricted
000861807 8564_ $$uhttps://juser.fz-juelich.de/record/861807/files/c9cp00302a.pdf?subformat=pdfa$$xpdfa$$yRestricted
000861807 909CO $$ooai:juser.fz-juelich.de:861807$$pVDB
000861807 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169176$$aForschungszentrum Jülich$$b1$$kFZJ
000861807 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145895$$aForschungszentrum Jülich$$b2$$kFZJ
000861807 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130754$$aForschungszentrum Jülich$$b3$$kFZJ
000861807 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130928$$aForschungszentrum Jülich$$b4$$kFZJ
000861807 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165965$$aForschungszentrum Jülich$$b5$$kFZJ
000861807 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167381$$aForschungszentrum Jülich$$b6$$kFZJ
000861807 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145420$$aForschungszentrum Jülich$$b7$$kFZJ
000861807 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b8$$kFZJ
000861807 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130572$$aForschungszentrum Jülich$$b9$$kFZJ
000861807 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000861807 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000861807 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000861807 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000861807 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000861807 9141_ $$y2019
000861807 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000861807 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000861807 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000861807 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2017
000861807 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861807 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861807 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000861807 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861807 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000861807 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861807 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861807 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000861807 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000861807 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000861807 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000861807 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000861807 9201_ $$0I:(DE-Juel1)JCNS-HBS-20180709$$kJCNS-HBS$$lHigh Brilliance Source$$x3
000861807 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x4
000861807 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x5
000861807 980__ $$ajournal
000861807 980__ $$aVDB
000861807 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000861807 980__ $$aI:(DE-Juel1)PGI-4-20110106
000861807 980__ $$aI:(DE-82)080009_20140620
000861807 980__ $$aI:(DE-Juel1)JCNS-HBS-20180709
000861807 980__ $$aI:(DE-Juel1)PGI-5-20110106
000861807 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000861807 980__ $$aUNRESTRICTED
000861807 981__ $$aI:(DE-Juel1)ER-C-1-20170209
000861807 981__ $$aI:(DE-Juel1)JCNS-2-20110106