000861857 001__ 861857
000861857 005__ 20240625095117.0
000861857 0247_ $$2doi$$a10.1080/07391102.2018.1462733
000861857 0247_ $$2ISSN$$a0008-7114
000861857 0247_ $$2ISSN$$a0739-1102
000861857 0247_ $$2ISSN$$a1538-0254
000861857 0247_ $$2ISSN$$a2165-5391
000861857 0247_ $$2pmid$$apmid:29633901
000861857 0247_ $$2WOS$$aWOS:000461434300018
000861857 037__ $$aFZJ-2019-02278
000861857 082__ $$a570
000861857 1001_ $$0P:(DE-HGF)0$$aAmundarain, María Julia$$b0
000861857 245__ $$aOrthosteric and benzodiazepine cavities of the α 1 β 2 γ 2 GABA A receptor: insights from experimentally validated in silico methods
000861857 260__ $$aAbingdon [u.a.]$$bTaylor & Francis$$c2019
000861857 3367_ $$2DRIVER$$aarticle
000861857 3367_ $$2DataCite$$aOutput Types/Journal article
000861857 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1560429272_28984
000861857 3367_ $$2BibTeX$$aARTICLE
000861857 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861857 3367_ $$00$$2EndNote$$aJournal Article
000861857 520__ $$aγ-aminobutyric acid-type A (GABAA) receptors mediate fast synaptic inhibition in the central nervous system of mammals. They are modulated via several sites by numerous compounds, which include GABA, benzodiazepines, ethanol, neurosteroids and anaesthetics among others. Due to their potential as targets of novel drugs, a detailed knowledge of their structure-function relationships is needed. Here, we present the model of the α1β2γ2 subtype GABAA receptor in the APO state and in complex with selected ligands, including agonists, antagonists and allosteric modulators. The model is based on the crystallographic structure of the human β3 homopentamer GABAA receptor. The complexes were refined using atomistic molecular dynamics simulations. This allowed a broad description of the binding modes and the detection of important interactions in agreement with experimental information. From the best of our knowledge, this is the only model of the α1β2γ2 GABAA receptor that represents altogether the desensitized state of the channel and comprehensively describes the interactions of ligands of the orthosteric and benzodiazepines binding sites in agreement with the available experimental data. Furthermore, it is able to explain small differences regarding the binding of a variety of chemically divergent ligands. Finally, this new model may pave the way for the design of focused experimental studies that will allow a deeper description of the receptor.
000861857 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000861857 588__ $$aDataset connected to CrossRef
000861857 7001_ $$0P:(DE-HGF)0$$aViso, Juan Francisco$$b1
000861857 7001_ $$0P:(DE-HGF)0$$aZamarreño, Fernando$$b2
000861857 7001_ $$0P:(DE-Juel1)165199$$aGiorgetti, Alejandro$$b3$$eCorresponding author
000861857 7001_ $$00000-0002-8969-7208$$aCostabel, Marcelo$$b4$$eCorresponding author
000861857 773__ $$0PERI:(DE-600)2085732-9$$a10.1080/07391102.2018.1462733$$gVol. 37, no. 6, p. 1597 - 1615$$n6$$p1597 - 1615$$tJournal of biomolecular structure & dynamics$$v37$$x0739-1102$$y2019
000861857 8564_ $$uhttps://juser.fz-juelich.de/record/861857/files/amundarai%20et%20al-1.pdf$$yRestricted
000861857 8564_ $$uhttps://juser.fz-juelich.de/record/861857/files/amundarai%20et%20al-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000861857 909CO $$ooai:juser.fz-juelich.de:861857$$pVDB
000861857 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165199$$aForschungszentrum Jülich$$b3$$kFZJ
000861857 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000861857 9141_ $$y2019
000861857 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861857 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000861857 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ BIOMOL STRUCT DYN : 2017
000861857 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861857 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861857 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000861857 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861857 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861857 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000861857 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000861857 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000861857 920__ $$lyes
000861857 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000861857 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000861857 980__ $$ajournal
000861857 980__ $$aVDB
000861857 980__ $$aI:(DE-Juel1)IAS-5-20120330
000861857 980__ $$aI:(DE-Juel1)INM-9-20140121
000861857 980__ $$aUNRESTRICTED