001     861857
005     20240625095117.0
024 7 _ |a 10.1080/07391102.2018.1462733
|2 doi
024 7 _ |a 0008-7114
|2 ISSN
024 7 _ |a 0739-1102
|2 ISSN
024 7 _ |a 1538-0254
|2 ISSN
024 7 _ |a 2165-5391
|2 ISSN
024 7 _ |a pmid:29633901
|2 pmid
024 7 _ |a WOS:000461434300018
|2 WOS
037 _ _ |a FZJ-2019-02278
082 _ _ |a 570
100 1 _ |a Amundarain, María Julia
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Orthosteric and benzodiazepine cavities of the α 1 β 2 γ 2 GABA A receptor: insights from experimentally validated in silico methods
260 _ _ |a Abingdon [u.a.]
|c 2019
|b Taylor & Francis
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1560429272_28984
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a γ-aminobutyric acid-type A (GABAA) receptors mediate fast synaptic inhibition in the central nervous system of mammals. They are modulated via several sites by numerous compounds, which include GABA, benzodiazepines, ethanol, neurosteroids and anaesthetics among others. Due to their potential as targets of novel drugs, a detailed knowledge of their structure-function relationships is needed. Here, we present the model of the α1β2γ2 subtype GABAA receptor in the APO state and in complex with selected ligands, including agonists, antagonists and allosteric modulators. The model is based on the crystallographic structure of the human β3 homopentamer GABAA receptor. The complexes were refined using atomistic molecular dynamics simulations. This allowed a broad description of the binding modes and the detection of important interactions in agreement with experimental information. From the best of our knowledge, this is the only model of the α1β2γ2 GABAA receptor that represents altogether the desensitized state of the channel and comprehensively describes the interactions of ligands of the orthosteric and benzodiazepines binding sites in agreement with the available experimental data. Furthermore, it is able to explain small differences regarding the binding of a variety of chemically divergent ligands. Finally, this new model may pave the way for the design of focused experimental studies that will allow a deeper description of the receptor.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Viso, Juan Francisco
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zamarreño, Fernando
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Giorgetti, Alejandro
|0 P:(DE-Juel1)165199
|b 3
|e Corresponding author
700 1 _ |a Costabel, Marcelo
|0 0000-0002-8969-7208
|b 4
|e Corresponding author
773 _ _ |a 10.1080/07391102.2018.1462733
|g Vol. 37, no. 6, p. 1597 - 1615
|0 PERI:(DE-600)2085732-9
|n 6
|p 1597 - 1615
|t Journal of biomolecular structure & dynamics
|v 37
|y 2019
|x 0739-1102
856 4 _ |u https://juser.fz-juelich.de/record/861857/files/amundarai%20et%20al-1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/861857/files/amundarai%20et%20al-1.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:861857
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165199
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J BIOMOL STRUCT DYN : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21