| Hauptseite > Publikationsdatenbank > Tracing of Nerve Fibers Through Brain Regions of Fiber Crossings in Reconstructed 3D-PLI Volumes > print |
| 001 | 861890 | ||
| 005 | 20210130001118.0 | ||
| 024 | 7 | _ | |a 10.1007/978-3-658-25326-4_17 |2 doi |
| 037 | _ | _ | |a FZJ-2019-02311 |
| 041 | _ | _ | |a English |
| 100 | 1 | _ | |a Nolden, Marius |0 P:(DE-Juel1)167496 |b 0 |e Corresponding author |u fzj |
| 111 | 2 | _ | |a Bildverarbeitung für die Medizin |c Lübeck |d 2019-03-17 - 2019-03-19 |w Germany |
| 245 | _ | _ | |a Tracing of Nerve Fibers Through Brain Regions of Fiber Crossings in Reconstructed 3D-PLI Volumes |
| 260 | _ | _ | |a Berlin, Heidelberg |c 2019 |b Springer |
| 295 | 1 | 0 | |a Bildverarbeitung für die Medizin 2019 |
| 300 | _ | _ | |a 62 - 67 |
| 336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
| 336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
| 336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
| 336 | 7 | _ | |a conferenceObject |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
| 336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1576653166_4475 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a Contribution to a book |0 PUB:(DE-HGF)7 |2 PUB:(DE-HGF) |m contb |
| 520 | _ | _ | |a Three-dimensional (3D) polarized light imaging (PLI) is able to reveal nerve fibers in the human brain at microscopic resolution. While most nerve fiber structures can be accurately visualized with 3D-PLI, the currently used physical model (based on Jones Calculus) is not well suited to distinguish steep fibers from specific fiber crossings. Hence, streamline tractography algorithms tracing fiber pathways get easily misdirected in such brain regions. For the presented study, we implemented and applied two methods to bridge areas of fiber crossings: (i) extrapolation of fiber points with cubic splines and (ii) following the most frequently occurring orientations in a defined neighborhood based on orientation distribution functions gained from 3D-PLI measurements (pliODFs). Applied to fiber crossings within a human hemisphere, reconstructed from 3D-PLI measurements at 64 microns in-pane resolution, both methods were demonstrated to sustain their initial tract direction throughout the crossing region. In comparison, the ODF-method offered a more reliable bridging of the crossings with less gaps. |
| 536 | _ | _ | |a 574 - Theory, modelling and simulation (POF3-574) |0 G:(DE-HGF)POF3-574 |c POF3-574 |f POF III |x 0 |
| 536 | _ | _ | |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) |0 G:(EU-Grant)785907 |c 785907 |f H2020-SGA-FETFLAG-HBP-2017 |x 1 |
| 536 | _ | _ | |a SLNS - SimLab Neuroscience (Helmholtz-SLNS) |0 G:(DE-Juel1)Helmholtz-SLNS |c Helmholtz-SLNS |x 2 |
| 536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 3 |
| 588 | _ | _ | |a Dataset connected to CrossRef Book Series |
| 700 | 1 | _ | |a Schubert, Nicole |0 P:(DE-Juel1)159224 |b 1 |u fzj |
| 700 | 1 | _ | |a Schmitz, Daniel |0 P:(DE-Juel1)164129 |b 2 |u fzj |
| 700 | 1 | _ | |a Müller, Andreas |0 P:(DE-Juel1)151332 |b 3 |u fzj |
| 700 | 1 | _ | |a Axer, Markus |0 P:(DE-Juel1)131632 |b 4 |u fzj |
| 773 | _ | _ | |a 10.1007/978-3-658-25326-4_17 |p 62-67 |
| 909 | C | O | |o oai:juser.fz-juelich.de:861890 |p openaire |p VDB |p ec_fundedresources |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)167496 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)159224 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)164129 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)151332 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)131632 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-574 |2 G:(DE-HGF)POF3-500 |v Theory, modelling and simulation |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
| 914 | 1 | _ | |y 2019 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-1-20090406 |k INM-1 |l Strukturelle und funktionelle Organisation des Gehirns |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 1 |
| 980 | _ | _ | |a contrib |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a contb |
| 980 | _ | _ | |a I:(DE-Juel1)INM-1-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|