000861914 001__ 861914
000861914 005__ 20210130001120.0
000861914 0247_ $$2doi$$a10.1007/s00414-019-02054-9
000861914 0247_ $$2Handle$$a2128/24424
000861914 0247_ $$2altmetric$$aaltmetric:58887522
000861914 0247_ $$2pmid$$apmid:30976985
000861914 0247_ $$2WOS$$aWOS:000516579000041
000861914 037__ $$aFZJ-2019-02320
000861914 082__ $$a610
000861914 1001_ $$0P:(DE-HGF)0$$aBecker, Julia$$b0$$eCorresponding author
000861914 245__ $$aAge estimation based on different molecular clocks in several tissues and a multivariate approach: An explorative study
000861914 260__ $$aHeidelberg$$bSpringer$$c2020
000861914 3367_ $$2DRIVER$$aarticle
000861914 3367_ $$2DataCite$$aOutput Types/Journal article
000861914 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582894059_2296
000861914 3367_ $$2BibTeX$$aARTICLE
000861914 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861914 3367_ $$00$$2EndNote$$aJournal Article
000861914 500__ $$aBitte die Doi eintragen
000861914 520__ $$aSeveral molecular modifications accumulate in the human organism with increasing age. Some of these „molecular clocks“ in DNA and in proteins open up promising approaches for the development of methods for forensic age estimation. A natural limitation of these methods arises from the fact that the chronological age is determined only indirectly by analyzing defined molecular changes that occur during aging. These changes are not linked exclusively to the expired life span but may be influenced significantly by intrinsic and extrinsic factors in the complex process of individual aging. We tested the hypothesis that a combined use of different “molecular clocks” in different tissues results in more precise age estimates because this approach addresses the complex ageing processes in a more comprehensive way. Two molecular clocks (accumulation of D-aspartic acid (D-Asp), accumulation of pentosidine (PEN)) in two different tissues (annulus fibrosus of intervertebral discs and elastic cartilage of the epiglottis) were analyzed in 95 cases, and uni- and multivariate models for age estimation were generated.The more parameters were included in the models for age estimation, the smaller the mean absolute errors (MAE) became. While the MAEs were 7.5 – 11.0 years in univariate models, a multivariate model based on the two protein clocks in the two tissues resulted in a MAE of 4.0 years. These results support our hypothesis. The tested approach of a combined analysis of different molecular clocks analyzed in different tissues opens up new possibilities in postmortem age estimation. In a next step, we will add the epigenetic clock (DNA methylation) to our protein clocks (PEN, D-Asp) and expand our set of tissues.Keywords: Age estimation, pentosidine, D-aspartic acid, machine learning, age prediction model, molecular clocks
000861914 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000861914 7001_ $$0P:(DE-HGF)0$$aMahlke , Nina Sophie$$b1$$eCorresponding author
000861914 7001_ $$0P:(DE-HGF)0$$aReckert , Alexandra$$b2
000861914 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b3$$ufzj
000861914 7001_ $$0P:(DE-HGF)0$$aRitz-Timme, Stefanie$$b4
000861914 773__ $$0PERI:(DE-600)1459222-8$$a10.1007/s00414-019-02054-9$$p721-733$$tInternational journal of legal medicine$$v134$$x0044-3433$$y2020
000861914 8564_ $$uhttps://juser.fz-juelich.de/record/861914/files/Becker2020_Article_AgeEstimationBasedOnDifferentM.pdf$$yRestricted
000861914 8564_ $$uhttps://juser.fz-juelich.de/record/861914/files/Multivariate%20method%20_%20Abbildung%201.pptx$$yRestricted
000861914 8564_ $$uhttps://juser.fz-juelich.de/record/861914/files/Multivariate%20method%20_%20Abbildung%202_rev.pptx$$yRestricted
000861914 8564_ $$uhttps://juser.fz-juelich.de/record/861914/files/Multivariate%20method%20_%20Abbildung%203.pptx$$yRestricted
000861914 8564_ $$uhttps://juser.fz-juelich.de/record/861914/files/Multivariate%20method%20_%20Abbildung%204.pptx$$yRestricted
000861914 8564_ $$uhttps://juser.fz-juelich.de/record/861914/files/Multivariate%20method%20_%20Abbildung%205_rev1.pptx$$yRestricted
000861914 8564_ $$uhttps://juser.fz-juelich.de/record/861914/files/Multivariate%20method%20_%20Abbildung%206.pptx$$yRestricted
000861914 8564_ $$uhttps://juser.fz-juelich.de/record/861914/files/Multivariate%20method%20_%20Abbildung%207.pptx$$yRestricted
000861914 8564_ $$uhttps://juser.fz-juelich.de/record/861914/files/Multivariate%20method%20_%20Abbildung%208_rev.pptx$$yRestricted
000861914 8564_ $$uhttps://juser.fz-juelich.de/record/861914/files/Multivariate%20method%20_%20table%201_rev.docx
000861914 8564_ $$uhttps://juser.fz-juelich.de/record/861914/files/Revision_Multivariate%20method_final.pdf$$yPublished on 2019-04-11. Available in OpenAccess from 2020-04-11.
000861914 8564_ $$uhttps://juser.fz-juelich.de/record/861914/files/Revision_Multivariate%20method_final.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-04-11. Available in OpenAccess from 2020-04-11.
000861914 8564_ $$uhttps://juser.fz-juelich.de/record/861914/files/Becker2020_Article_AgeEstimationBasedOnDifferentM.pdf?subformat=pdfa$$xpdfa$$yRestricted
000861914 909CO $$ooai:juser.fz-juelich.de:861914$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000861914 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern
000861914 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern
000861914 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b3$$kFZJ
000861914 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b4$$kExtern
000861914 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000861914 9141_ $$y2020
000861914 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861914 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000861914 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000861914 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000861914 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J LEGAL MED : 2017
000861914 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861914 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000861914 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861914 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000861914 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000861914 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000861914 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861914 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000861914 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000861914 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861914 920__ $$lyes
000861914 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000861914 980__ $$ajournal
000861914 980__ $$aVDB
000861914 980__ $$aUNRESTRICTED
000861914 980__ $$aI:(DE-Juel1)INM-7-20090406
000861914 9801_ $$aFullTexts