000861952 001__ 861952
000861952 005__ 20240708132721.0
000861952 0247_ $$2doi$$a10.1016/j.seppur.2019.03.058
000861952 0247_ $$2ISSN$$a1383-5866
000861952 0247_ $$2ISSN$$a1873-3794
000861952 0247_ $$2WOS$$aWOS:000466250100019
000861952 0247_ $$2Handle$$a2128/22485
000861952 037__ $$aFZJ-2019-02358
000861952 082__ $$a540
000861952 1001_ $$0P:(DE-Juel1)171461$$aHe, Guanghu$$b0
000861952 245__ $$aPhase stability and oxygen permeability of Fe-based BaFe0.9Mg0.05X0.05O3 (X = Zr, Ce, Ca) membranes for air separation
000861952 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000861952 3367_ $$2DRIVER$$aarticle
000861952 3367_ $$2DataCite$$aOutput Types/Journal article
000861952 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1554127291_31848
000861952 3367_ $$2BibTeX$$aARTICLE
000861952 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861952 3367_ $$00$$2EndNote$$aJournal Article
000861952 520__ $$aThe effects of various dopants including Zr4+, Ce4+ and Ca2+ on the structure and oxygen permeability of B-site doped BaFe0.9Mg0.05X0.05O3−δ (BFM-X) perovskite-type oxygen transport membranes were studied. Slight X cation doping could stabilize the cubic structure of BFM-X perovskite down to room temperature. XRD, SEM and thermogravimetric results revealed that all the cubic BFM-X oxides exhibited good phase stability under argon atmosphere without any phase changes. The weight loss of BFM-Ce from TG analysis suggests the reduction of cerium ions at high temperatures, which may account for its larger electrical conductivity and higher oxygen permeability comparing to BFM-Zr and BFM-Ca membranes. X-ray photoelectron spectroscopy (XPS) data revealed that Ca dopant with larger size caused the mismatch with Fe ions and led to the substitution of Ca ions at both Fe and Ba site in BFM-Ca oxide, being detrimental to electrical conductivity and oxygen permeation. Among these membranes, BFM-Ce has the highest oxygen permeability and good long term permeation stability under air/argon gradient, thus it was recommended as a potential and promising material for air separation.
000861952 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000861952 588__ $$aDataset connected to CrossRef
000861952 7001_ $$0P:(DE-Juel1)129587$$aBaumann, Stefan$$b1
000861952 7001_ $$00000-0002-9714-7169$$aLiang, Fangyi$$b2
000861952 7001_ $$0P:(DE-Juel1)166271$$aHartmann, Heinrich$$b3
000861952 7001_ $$0P:(DE-HGF)0$$aJiang, Heqing$$b4
000861952 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, Wilhelm Albert$$b5$$eCorresponding author
000861952 773__ $$0PERI:(DE-600)2022535-0$$a10.1016/j.seppur.2019.03.058$$gVol. 220, p. 176 - 182$$p176 - 182$$tSeparation and purification technology$$v220$$x1383-5866$$y2019
000861952 8564_ $$uhttps://juser.fz-juelich.de/record/861952/files/He%20-%20BFM_OpenAccess.pdf$$yPublished on 2019-03-20. Available in OpenAccess from 2021-03-20.
000861952 8564_ $$uhttps://juser.fz-juelich.de/record/861952/files/He%20-%20BFM_OpenAccess.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-03-20. Available in OpenAccess from 2021-03-20.
000861952 909CO $$ooai:juser.fz-juelich.de:861952$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000861952 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich$$b1$$kFZJ
000861952 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166271$$aForschungszentrum Jülich$$b3$$kFZJ
000861952 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129637$$aForschungszentrum Jülich$$b5$$kFZJ
000861952 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000861952 9141_ $$y2019
000861952 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861952 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000861952 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000861952 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000861952 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSEP PURIF TECHNOL : 2017
000861952 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861952 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861952 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000861952 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000861952 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861952 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861952 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000861952 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x1
000861952 9801_ $$aFullTexts
000861952 980__ $$ajournal
000861952 980__ $$aVDB
000861952 980__ $$aUNRESTRICTED
000861952 980__ $$aI:(DE-Juel1)IEK-1-20101013
000861952 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000861952 981__ $$aI:(DE-Juel1)IMD-2-20101013