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Superimposed miscible liquids, the heavier one on top, when subjected to vibrations vertical to

their interface (dynamic stabilization), can only be maintained for a certain period. A mechanism

is presented explaining the resulting process of degradation and “anomalous diffusion” through that

interface. Superimposed liquids, the lighter one on top, exposed to horizontal vibrations, develop

a saw-tooth-like pattern called “frozen waves.” These are subject to conditions similar to those of

dynamic stabilization and, if miscible, thus can also only be maintained for a certain period. A

further analysis of these processes would be desirable, also in view of their relation to analogue

phenomena. Published by AIP Publishing. https://doi.org/10.1063/1.5017846

Although the effect of vibrations on liquid interfaces had

been already investigated in 1831 by Faraday1 and later also

by others (e.g., Ref. 2), it was only several decades ago that

the dynamic stabilization of the Rayleigh-Taylor instability

of superimposed liquids and their related phenomena like

parametric resonances/Faraday instabilities and dynamic equi-

libria had been considered, demonstrated,3–5 and extensively

studied.6–10

While at that time and later on,11 the issue of dynamic

stabilization was the main focus of attention, more recently—

partly also motivated in view of experiments under

microgravity—dynamic equilibria (“frozen waves”) excited

by horizontal vibrations, parallel to a statically stable interface

of superimposed liquids, gained increased interest.

Several publications (e.g., Refs. 3 and 12–16) deal with

the phenomenon of a more or less saw-tooth-like pattern that

develops when superimposed immiscible liquids of different

density—the lighter one on top of the heavier one—become

exposed to horizontal vibrations. In the more recent litera-

ture, they are mostly called “frozen waves.” They have first

been observed3 in the context of experiments demonstrating

the dynamic stabilization of the Rayleigh-Taylor instability of

superimposed liquids (theoretically supported by Ref. 7) and

the related dynamic equilibria. There3 they were identified

as the spatial sequence of dynamic equilibria with an alter-

nating angle of inclination, growing out of the now unstable

horizontal equilibrium. The inclination of these dynamic equi-

libria grew as the amplitude of the vibrations was increased,

and it could become so steep that instead of looking like saw

teeth, the two liquids developed into a sequence of separated

nearly vertical layers. Although, concerning the quantitative

relations of these frozen waves (mainly their angle of incli-

nation), rather simple and crude assumptions had been made

in Ref. 3, these relations could be largely confirmed later by

more refined studies and treatments.16

To understand this behavior, the underlying physics of

dynamic stabilization had been transferred to the correspond-

ing dynamic equilibria,3 in analogy to the Kapitsa pendu-

lum17,18 when oscillating horizontally. This implies that the

conditions for dynamic stabilization are now transferred to

those of the dynamic equilibria3,16 of the “frozen waves”

when accounting for the angle of the different forces. In

other words, while in the case of dynamic stabilization of

the Rayleigh-Taylor instability, the heavier liquid is on top

of the lighter one, i.e., the liquids are separated vertically,

in the case of dynamic equilibria, specifically in the form

of “frozen waves,” the two liquids are separated mainly

horizontally but with a certain (alternating) angle of incli-

nation which can approach a vertical position. The physi-

cal conditions and processes to maintain the boundary lay-

ers are similar when accounting for the angle of the acting

forces.

However, while for the Kapitsa pendulum only one mode

(eigenfrequency) needs to be stabilized, in superimposed liq-

uids and in “frozen waves,” there exists a whole continuum

of modes, out of which, for given vibration parameters, only

a certain bandwidth of possible modes can be dynamically

stabilized. Approaching the upper limit, the vibrations excite

parametric resonances (e.g., Refs. 3, 9, and 19) or “Faraday

instabilities.” This can even be seen from Fig. 1(b) of Ref. 3,

where parametric resonances also occurred. Therefore, for the

dynamic equilibria of frozen waves in immiscible liquids, both

a sufficient viscosity and surface tension9 on the one hand

(to suppress parametric instabilities) and not too large ves-

sel dimensions on the other hand (to avoid too slow-growing

modes) are needed to contain the spectrum of possible modes

within the given bandwidth.

It is worthwhile to note that analogies of this method con-

cern also other fields of physics, like the “strong focusing” of

accelerators20 or the Paul-trap.18,21

More recently, Gaponenko et al.22 and Shevtsova et al.23

dealt with superimposed miscible liquids and with the pat-

terns of the now diffuse boundary layer developing under

periodic excitations—including experiments under reduced

gravity. Also here, the interfaces, when exposed to vibra-

tions, develop saw-tooth-like patterns or even some kind of

rectangular structures, which usually end up with various dis-

tortions and a turbulent mixture or even the break-down of
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the interfaces. These processes were analyzed with extensive

mathematical and numerical instrumentation. In their emer-

gence, the excitation and growth of the frozen waves were

mainly attributed to Kelvin-Helmholtz instabilities and, in

their final state, mainly to Faraday instabilities. These Fara-

day instabilities were attributed to Raleigh-Taylor instabilities

being periodically excited by the instantaneous acceleration of

each vibration.

In fact, this is the same interpretation as in the very first

publication3 on dynamic stabilization and dynamic equilib-

ria and the very reason why there Faraday instabilities were

referred to as “parametric resonances,” limiting or exceed-

ing the possible range of parameters at the upper end of the

bandwidth under which complete dynamic stabilization and

dynamic equilibria are possible. Starting from these early

results,3 an extensive study on parametric resonances had

already been made in 1974.10

Thus, while in Refs. 22 and 23 the Faraday instabili-

ties were correctly attributed to an induced Raleigh-Taylor

instability resulting from oscillations with a major component

perpendicular to the boundary layer in analogy to the dynamic

stabilization of superimposed liquids, however, what may not

have been recognized and therefore appears to be missing in

their interpretation is that, in the case of miscible liquids, the

very Raleigh-Taylor instability as such (meaning those modes

which are not caused be the vibrations themselves)—averaged

over the vibration periods—cannot be completely stabilized

by such vibrations. Consequently also no lasting correspond-

ing dynamic equilibria can be maintained because, for diffuse

boundary layers, there exist also low-frequency modes lying

outside the lower end of the bandwidth which can be stabilized.

May be their effect had been camouflaged by the faster growing

parametric resonances/Faraday instabilities, which obviously

had not been avoided (e.g., by choosing more suitable vibration

parameters).

The problem of these too slowly growing modes was

already addressed in the very first paper3 on this subject,

where the diffuse boundary layers of miscible liquids were also

considered as a means to suppress parametric resonances/

Faraday instabilities without needing sufficient viscosity since

modes with a wavelength shorter than the thickness of the

layer do not grow any faster when further reducing their wave-

length.24 However, it was known already at that time (see the

footnote of Ref. 3) that in a diffuse boundary layer also modes

(of short wavelength perpendicular to the boundary layer) can

develop that grow so slowly24 that they fall outside the range

of the bandwidth of modes that can be dynamically stabilized

or brought into a dynamic equilibrium, although they may be

suppressed for other “granular” reasons, such as in magnetized

plasmas by Larmor-radius effects.6

It was this very fact of incomplete stabilization which,

already at that time, had stimulated specific investigations

also with miscible liquids.5 There an aqueous solution of ZnJ

(density 1.8 g/ccm) and pure water, separated by a diffuse

boundary layer, was subjected to vibration experiments. Their

main result was—as expected—that a degradation process

occurred and indeed no lasting stabilized state could be main-

tained. However, compared with the turbulent breakdown time

of the un-stabilized state, the time until a complete mixture has

been obtained and could be prolonged by two to three orders

of magnitude. Figure 1 shows a sequence of photographs

(taken from the experiments of Ref. 5) covering—from left

to right—a time span of 8 min.

The left-most picture (a) shows the stable state before

turning the vessel upside down, and the right-most one

(f) shows the process of the final turbulent mixture at the

moment (after 8 min) when the vibrations were switched

off. Picture (b) shows the initial state after turn-over, and

pictures (c)–(e) show the state at equidistant intervals until

said 8 min.

In the experiments described,5 these degradation pro-

cesses phenomenologically led to some kind of “anomalous

diffusion” between the two components exceeding the speed of

normal diffusion being several orders of magnitude but equally

prolonging the inverted state of the two components by 2–3

orders of magnitude.

FIG. 1. Photograph on the left (a) showing a cylindri-

cal glass vessel of inner diameter 0.78 cm, filled with

an aqueous solution of ZnJ with a density of 1.8 g/ccm

upon which pure water has been superimposed. This

was exposed to vertical harmonic oscillations with a

frequency of 100 Hz and a maximum instantaneous

acceleration of 60 g. It was then turned upside down

(b). The next three pictures [(c)–(e)] from the left to

right show about equidistant snapshots (illuminated by

a stroboscope coupled to the phase of the oscillation)

over a period of 8 min, beginning immediately after the

turn-over and ending after 8 min. The right-side picture

(f) shows the turbulent state when the vibration had been

stopped after said 8 min. [From the experiments of Ref. 5.

Reproduced with permission from G. H. Wolf, “Dynamic

stabilization of hydrodynamic interchange instabilities—

A model for plasma physics,” AIP Conf. Proc. 1, 293

(1970). Copyright 1970 AIP Publishing LLC.]
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FIG. 2. A possible explanation of the process shown

in Fig. 1. From left to right: falling leaves, narrowing

the boundary layer; Faraday instabilities, broadening the

boundary layer; and again development of falling leaves.

Two interesting further details need to be addressed.

1. As a result of or during the turnover, the boundary layer

separating the two liquids initially broke up into three

individual layers (fourth picture only two layers).

2. A possible process driving the above-mentioned “anoma-

lous diffusion” could just be seen, which offers the

following interpretation.

As shown in Fig. 2, from left to right, there may exist, to

begin with (left), a boundary layer which is sufficiently broad

to suppress or damp short wavelength parametric instabili-

ties but is the optimal breeding ground for those of the un-

stabilized modes, which grow fastest under the given vibration

conditions. These remnant modes—phenomenologically—

defoliate the boundary layer [see, e.g., Figs. 1(c)–1(e)] by

taking some part of it away, looking and moving like falling

leaves.

As a result (middle), the remaining boundary layer became

smaller and, thus, less fertile for further falling leaves. How-

ever, it therefore allowed now short wavelength parametric

resonances/Faraday instabilities to develop, which, by caus-

ing local turbulence, broaden the boundary layer (see also

Figs. 5 and 6 of Ref. 22) to such an extent that they undermine

their very basis of existence but prepare again the breed-

ing ground for the next (right) defoliation process. In other

words, in broad boundary layers, slow-growing un-stabilized

modes (defoliation) dominate and in thin boundary layers

parametric resonances/Faraday instabilities dominate, each of

them preparing the breeding ground for the other. This seems

to be related to the broad group of phenomena like Edge

Localized Modes (ELMs)25,26 in tokamaks, predator-prey rela-

tions in ecology (e.g., Ref. 27), or catalytic reactions on

surfaces.28

Of course, these mainly qualitative explanations and con-

siderations open a range of interesting questions concern-

ing the interplay of these competing unstable modes, their

detailed quantitative description and parametric dependencies

(e.g., why do the interfaces split, which, under given vibra-

tion parameters, is the dominating mode out of which the

“falling leaves” develop, and why do they continue to fall

undistorted?), and their role for the speed of the “anoma-

lous diffusion.” Regrettably, these questions were neither

addressed nor, apparently, recognised in the publications so

far known to the author. Therefore, it would be desirable, if

these gaps could be closed using the powerful experimental

and theoretical instrumentation now available to the teams

working in this field.
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