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ABSTRACT

We introduce a new approach for the elastic registration of

high-resolution 3D polarized light imaging (3D PLI) data of

histological sections of the human brain. For accurate regis-

tration of different types of 3D PLI modalities, we propose

a novel intensity similarity measure that is based on a least-

squares formulation of normalized cross-correlation. More-

over, we present a fully automatic registration pipeline for

rigid and elastic registration of high-resolution 3D PLI images

with a blockface reference including a preprocessing step. We

have successfully evaluated our approach using manually ob-

tained ground truth for five sections of a human brain and ex-

perimentally compared it with previous approaches. We also

present experimental results for 60 brain sections.

Index Terms— 3D PLI, Elastic registration, Human brain

1. INTRODUCTION

The study of the connectome of the human brain is an im-

portant topic in neuroscience (e.g., [1]). Main contributions

come from electron microscopy, optical microscopy, and dif-

fusion Magnetic Resonance Imaging (MRI). However, each

modality is only suited to brain structures in its range of res-

olution, which either limits the sample size, the number of

subjects, or the investigated anatomical features. Diffusion

MRI represents to date the only solution to image whole brain

connectivity [2], but at the expense of resolution, i.e., recon-

structing individual fibers or small fiber bundles is not feasi-

ble. To enable whole brain connectivity analysis with much

higher resolution, a technique using polarized light referred

to as 3D PLI has been utilized for imaging unstained histo-

logical brain sections [3]. 3D PLI achieves an image resolu-

tion of 64µm using a large area polarimeter, it provides good

fiber/non-fiber contrasts for entire human brain sections, and

it obtains local 3D fiber orientation vectors that are essen-

tial for determining the 3D fiber architecture. In this work,

we utilize histological images of human brain sections with a

thickness of 70µm. During sectioning, a so-called blockface

(BF) image was obtained for each brain section. The stack of

reconstructed BF images [4] serves as undistorted reference.

Exemplarily, Fig. 1 shows a BF image (left) and a correspond-

ing 3D PLI image (right). With 3D PLI, different types of

Fig. 1. Section of a temporal lobe of a human brain: Block-

face image (left) and 3D PLI transmittance image (right).

high-resolution (64µm pixel size) image modalities are ac-

quired (see Fig. 2): A light reflectance image, a transmit-

tance image representing light extinction, a retardation image

showing the tissue birefringence, as well as a direction and an

inclination image giving the local 3D fiber orientation. Un-

fortunately, due to the tissue sectioning process the 3D spatial

coherence between 2D sections is lost (i.e., the sections are

arbitrarily positioned and oriented). Moreover, the sectioning

process inevitably introduces significant distortions and lo-

cal tissue deformations as well as partly severe artifacts such

as fissures, folds, and gaps. Therefore, linear and non-linear

(elastic) registration is required to obtain a 3D reconstruction

of high-resolution 3D PLI data. Regarding the registration of

3D PLI data, only little work can be found [5, 6]. In [5], a rel-

atively small region of a different brain was considered where

the 3D PLI data has a coarser (isotropic) resolution of 100µm
(such thicker sections are less prone to sectioning artifacts).

In contrast, [6] considered 3D PLI data of a rat brain, which

is much smaller and has a much simpler structure compared

to a human brain. Moreover, both approaches use coarse de-

formation models that are based on B-splines [6] or a fluid

model [5], which do not well represent local deformations

caused by the sectioning process. Concerning the registration

of histological brain sections based on optical imaging, pre-

vious work (e.g., [5, 7, 8, 6, 9]) typically follows a common

approach where individual sections are first linearly (rigid or

affine) registered against a 3D reference (using BF [5, 6], MRI

[9], or both [7, 8]), followed by non-linear registration. Dif-

ferent types of non-linear schemes such as diffeomorphic reg-

istration (e.g., [9]), free-form deformations using B-splines

(e.g., [7, 6]), and local linear grid schemes (e.g., [8]) have
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Fig. 2. Example section: Blockface image (left) as well as cropped images of different 3D PLI modalities of Fig.1.

been used. However, none of the approaches included a phys-

ical deformation model that represents elastic deformations of

tissue sections. We introduce a novel approach for the elas-

tic registration of high-resolution 3D PLI data of histological

sections of the human brain. The main contribution of our

work is two-fold. First, we introduce a novel intensity simi-

larity measure for elastic registration of 3D PLI data with BF

images. The similarity measure is based on a least-squares

formulation of normalized cross-correlation [10], which we

extend for the considered image data. In contrast to [10],

where the measure is used for optical flow estimation, we

integrate the extended measure in an elastic registration ap-

proach based on Gaussian elastic body splines (GEBS) [11].

GEBS have the advantage that they rely on a physical defor-

mation model based on the Navier equation from elasticity

theory and thus model local tissue deformations more real-

istically (e.g., compared to [5, 6]). In comparison to previ-

ous multimodal similarity measures used in conjunction with

GEBS such as mutual information [12], the proposed mea-

sure is more robust, more efficient, and yields more accurate

results. Moreover, the measure is suitable both for light re-

flectance and transmittance 3D PLI modalities. Second, we

here present a fully automatic registration pipeline for rigid

and elastic registration of high-resolution 3D PLI images with

a BF reference including relevant preprocessing (e.g., seg-

mentation). Finally, we have evaluated our approach based

on manually obtained ground truth for five sections of a hu-

man brain and compared it with previous similarity measures.

We also present experimental results for 60 brain sections.

2. ELASTIC 3D PLI REGISTRATION

Below, we first review an elastic registration approach us-

ing Gaussian elastic body splines (GEBS) (Sect. 2.1). Then,

we introduce the novel intensity similarity measure (Sect. 2.2)

and describe the integration into the GEBS approach (Sect. 2.3).

2.1. Intensity-based elastic registration using GEBS

GEBS are based on the Navier equation of elasticity [13]

µ∆u+ (λ+ µ)∇ (divu) + f = 0 (1)

with the deformation vector field u = (u, v, w), body forces

f , and the Lamé constants µ, λ. For 3D Gaussian forces f ,

an analytic solution of (1) in the form of a matrix-valued ba-

sis function has been derived (GEBS, [14]). For intensity-

based registration, an energy-minimizing functional JGEBS

has been proposed [11] to compute the deformation u for reg-

istration of a source image g1 with a target image g2

JGEBS(u) = (2)

JData,I

(

g1, g2,u
I
)

+ λIJI
(

u,uI
)

+ λE JElastic(u) ,

which consists of three terms. Besides u, (2) comprises a

second deformation field u
I which is computed based on the

intensity information. The first term JData,I represents an in-

tensity similarity measure between the deformed source and

target image. In previous work, we used the sum-of-squared

intensity differences (SSD) for the monomodal case [11] as

well as joint entropy (JE) and mutual information (MI) for

the multimodal case [12]. In Sect. 2.2 below, we introduce a

new correlation-based measure for GEBS that is well suited

for registration of 3D PLI data. The second term JI cou-

ples the intensity-based deformation field u
I with u using a

weighted Euclidean distance (see [11] for details). Finally,

the third term JElastic represents the regularization of the de-

formation field u based on the elastic energy according to the

Navier equation. An efficient way of minimizing JGEBS is to

minimize it alternatingly w.r.t. uI and u until convergence of

the resulting deformation field u is achieved. For minimiza-

tion w.r.t. uI , we developed an efficient strategy for the new

similarity measure presented in Sect. 2.3 below. For mini-

mization w.r.t. u, we use the analytic solution derived in [11].

2.2. Intensity similarity measure

A suitable intensity similarity measure for the registration of

3D PLI data with BF images is given by the normalized cross-

correlation (NCC, e.g., [15])

NCC (g1, g2) =
1

N

∑

x

(g1(x)− µ1) · (g2(x)− µ2)

σ1σ2

(3)

where g1 and g2 are two images with N pixels each as well

as their mean values µ1 and µ2, and standard deviations σ1

and σ2, respectively. Minimization of 1−NCC yields the

optimum zero for g1=g2. However, the optimization of this

measure is not trivial and computationally expensive, and it

is difficult to integrate it in the data term JData,I in (2). To
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Fig. 3. Example results of the correlation transform g̃ (x) and

its extensions |g̃ (x)| and ğ (x) for images of a disk (top) and

a square (bottom) with a Gaussian spot in their center.

simplify the integration into the GEBS approach, we reformu-

late the measure in (3) using the correlation transform (CoT)

g̃ (x), which yields a least-squares formulation [10]:

1−NCC (g1, g2) =
1

2N

∑

x

(g̃1(x)− g̃2(x))
2

(4)

The CoT g̃ (x) (aka standard score, z-score) is given by

g̃ (x) = (g (x)− µg) /σg. (5)

For example, Fig. 3 shows the result of the CoT g̃ (x) for

images of a disk (top) and square (bottom), both with a Gaus-

sian spot in the center and having roughly inverted contrast.

The CoT has been computed using (5) where for each pixel

x the mean µg and standard deviation σg are computed in a

local neighborhood (we used a size of 11× 11 pixels). It can

be seen in the transformed images that the intensities differ

largely between the circle and the square, and that the small

amount of image noise present in the original images (hardly

visible) is strongly amplified. Thus, g̃ (x) is not directly suit-

able for the least-squares formulation in (4).

To develop a more suitable similarity measure, we extend

the idea of [10] in two ways: First, we use the absolute value

|g̃ (x)| of the CoT, which yields a result that is independent of

the contrast (Fig. 3). And second, we clip the computed stan-

dard deviation below a certain threshold Tσ to avoid division

by small values in homogeneous regions, which removes the

amplified noise (Fig. 3, right). The extended CoT ğ (x) reads

ğ (x) = |g (x)− µg| /clip (σg, [Tσ,∞]) , (6)

and emphasizes edges and other features like spots indepen-

dently of the contrast, it is robust against noise, and it is thus

well suited for the least-squares formulation in (4).

2.3. Integration and optimization of similarity measure

The data term JData,I of the new NCC measure is given by:

JData,I

(

g1, g2,u
I
)

=
∑

x

(

ğ1
(

x+ u
I
)

− ğ2(x)
)2

(7)

For minimization of the overall functional JGEBS w.r.t. uI ,

we use a local pixel-wise formulation of JData,I + λIJI as

Segmentation COM alignm. Rigid reg. Elastic reg.

Fig. 4. Main steps of 3D PLI registration pipeline.

described in [11]. However, in contrast to [11, 12] we here

introduce a Gaussian-weighted region-of-interest (ROI), i.e.,

JData,I + λIJI reads for a pixel x0

∑

x∈ROI
G2D

σ (‖x− x0‖)
(

ğ1
(

x+ u
I
)

− ğ2(x)
)2

+λI‖u
I(x0)− u(x0)‖ (8)

where G2D
σ denotes a 2D Gaussian with standard deviation

σ (we used σ = 1). The reason for using a Gaussian ROI

is that ğ yields similar values on both sides of an edge (see

Fig. 3 right), which can lead to ambiguous results in local

optimization if no neighborhood information is available.

Since (8) comprises only (weighted) squared differ-

ences, we use the efficient minimization scheme of Lev-

enberg/Marquardt [16, 17]. The extended CoT of the target

image is precomputed before registration, and of the source

image is computed once before each minimization step.

3. 3D PLI REGISTRATION PIPELINE

Our fully automatic registration pipeline comprises prepro-

cessing as well as rigid and elastic registration.

Preprocessing For registration of 3D PLI data with BF

images (see Fig. 1), localization of the brain within the 3D

PLI data is required. To this end, we segment the brain using

a two-step refinement approach. First, we apply linear and

non-linear noise reduction and multi-level Otsu thresholding

[18] with 3 different thresholds, followed by morphological

operations and shape filters to remove undesired shapes to

obtain a coarse segmentation. Second, we refine the results

by using Huang thresholding [19] within an enlarged bound-

ing box of the coarse segmentation. For example, Fig. 4

(left) shows the segmentation result for the 3D PLI section of

Fig. 1 (right). Next, we compute the center of mass (COM)

of the segmented BF [4] and 3D PLI images, and compute

an initial alignment by matching the COMs (see Fig. 4 for a

color overlay).

Rigid registration For rigid registration of the initially

aligned BF and 3D PLI images, we use the scheme in [20].

Prior to registration we transform the intensities of the BF im-

age to resemble the intensities of the light reflectance 3D PLI

image. To initialize the orientation we apply rigid registration

to downscaled versions of the images (factor 4) by using 36

different orientations, and choose the result with lowest error.

Fig. 4 and Fig. 5 (left) show rigid registration results.



Fig. 5. Rigid (left) and elastic (right) registration result over-

laid with edges of the BF image for a ROI of results in Fig. 4.

Elastic registration After rigid registration, we use elastic

registration to compensate local deformations caused by the

sectioning process. We use the GEBS approach described

in Sect. 2.1 with the novel NCC-based similarity measure

presented in Sections 2.2 and 2.3. To enable registration of

larger deformations, we use four multi-resolution levels, and

to ensure realistic deformations we verify that the Jacobian

remains positive. As source image, we choose either the light

reflectance or transmittance 3D PLI image. The final defor-

mation field is then applied to all 3D PLI modalities (see

Fig. 2). Figs. 4 and 5 (right) show elastic registration results.

4. EXPERIMENTAL RESULTS

We have evaluated our new approach and the registration

pipeline using five sections of a human brain each of 64µm
pixel size. Ground truth correspondences between the 3D PLI

data and the BF reference have been manually defined by two

experts (on average 76 correspondences per section). Table

1 shows the target registration error (TRE) for COM align-

ment, rigid registration, and elastic registration using either

the transmittance or the light reflectance 3D PLI modality as

source image. We also compared our new NCC measure with

previous joint entropy (JE) and mutual information (MI) [12].

The mean TRE of rigid registration is 10.68 pixels, while

elastic registration yields the best results using the new NCC

measure with mean errors of 3.79 and 3.64 pixels for transmit-

tance and light reflectance images, respectively. These values

are even below the interobserver variability of 4.53 pixels. In

Fig. 6. Rigid (left) and elastic registration (right) of 60 con-

secutive sections of 3D PLI data of a human brain.

comparison, JE and MI yield larger TREs for all single sec-

tions. Using JE, it was not possible to obtain proper results

for light reflectance images. Moreover, we have successfully

applied our registration pipeline to 60 consecutive sections of

a human brain. Fig. 6 shows a 3D visualization of the aligned

sections using rigid registration (left) and elastic registration

with NCC (right). It can be seen that using elastic registration

the sections including fine brain structures are well aligned.

5. CONCLUSIONS

We have introduced a new approach for the elastic registra-

tion of high-resolution 3D PLI data of histological sections

of the human brain. We proposed a novel intensity similar-

ity measure that extends a previous least-squares formulation

of normalized cross-correlation. Moreover, a fully automatic

registration pipeline, which comprises preprocessing as well

as rigid and elastic registration of 3D PLI data with a BF

reference is presented. We have successfully evaluated our

approach using manually obtained ground truth correspon-

dences for five sections of a human brain and experimentally

compared it with previous approaches. We also presented ex-

perimental results for 60 brain sections.
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3D PLI section

TRE in pixels (mean±stdDev) #1 #2 #3 #4 #5 Mean

COM alignment 573.91±225. 529.92±224. 517.40±210. 527.02±236. 553.71±219. 540.39±223.

Rigid registration 11.98±6.53 6.85±4.77 8.16±5.04 13.14±8.55 13.25±7.19 10.68±6.42

Source: Transmittance image

Elastic: JE [12] 7.05±3.65 3.59±2.18 4.81±3.16 7.75±9.82 8.14±7.60 6.27±5.28

Elastic: MI [12] 6.71±5.31 3.74±3.01 4.04±2.53 5.03±3.78 6.96±6.38 5.30±4.20

Elastic: New NCC measure 4.27±3.01 2.93±1.83 3.88±2.30 3.67±2.28 4.20±3.37 3.79±2.56

Source: Light reflectance image

Elastic: JE [12] 19.26±11.4 17.07±6.49 8.64±6.49 17.57±7.79 16.73±9.37 15.85±8.30

Elastic: MI [12] 5.04±3.27 4.32±3.65 4.13±2.52 5.00±4.94 6.38±6.12 4.98±4.10

Elastic: New NCC measure 4.19±3.07 2.92±1.85 3.67±2.12 3.31±2.30 4.10±3.72 3.64±2.61

Interobserver variability 5.29±6.45 6.53±9.30 4.47±5.21 3.48±3.59 2.88±3.31 4.53±5.57

Table 1. Evaluation of registration pipeline and comparison of different similarity measures using five 3D PLI brain sections.
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