001     862037
005     20220930130208.0
024 7 _ |a 10.3390/rs11070828
|2 doi
024 7 _ |a 2128/22089
|2 Handle
024 7 _ |a WOS:000465549300093
|2 WOS
037 _ _ |a FZJ-2019-02405
082 _ _ |a 620
100 1 _ |a Andre, Frederic
|0 P:(DE-Juel1)129428
|b 0
245 _ _ |a Accounting for Surface Roughness Scattering in the Characterization of Forest Litter with Ground-Penetrating Radar
260 _ _ |a Basel
|c 2019
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1555999516_23035
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Accurate characterization of forest litter is of high interest for land surface modeling and for interpreting remote sensing observations over forested areas. Due to the large spatial heterogeneity of forest litter, scattering from litter layers has to be considered when sensed using microwave techniques. Here, we apply a full-waveform radar model combined with a surface roughness model to ultrawideband ground-penetrating radar (GPR) data acquired above forest litter during controlled and in situ experiments. For both experiments, the proposed modeling approach successfully described the radar data, with improvements compared to a previous study in which roughness was not directly accounted for. Inversion of the GPR data also provided reliable estimates of the relative dielectric permittivity of the recently fallen litter (OL layer) and of the fragmented litter in partial decomposition (OF layer) with, respectively, averaged values of 1.35 and 3.8 for the controlled experiment and of 3.9 and 7.5 for the in situ experiment. These results show the promising potentialities of GPR for efficient and non-invasive characterization of forest organic layers.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Jonard, François
|0 P:(DE-Juel1)129478
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Jonard, Mathieu
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 3
700 1 _ |a Lambot, Sébastien
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.3390/rs11070828
|g Vol. 11, no. 7, p. 828 -
|0 PERI:(DE-600)2513863-7
|n 7
|p 828 -
|t Remote sensing
|v 11
|y 2019
|x 2072-4292
856 4 _ |u https://juser.fz-juelich.de/record/862037/files/Invoice_MDPI_remotesensing-456196_1367.42EUR.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/862037/files/Invoice_MDPI_remotesensing-456196_1367.42EUR.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/862037/files/remotesensing-11-00828.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/862037/files/remotesensing-11-00828.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:862037
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129478
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REMOTE SENS-BASEL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21