000862045 001__ 862045
000862045 005__ 20220930130209.0
000862045 0247_ $$2doi$$a10.1002/hbm.24855
000862045 0247_ $$2ISSN$$a1065-9471
000862045 0247_ $$2ISSN$$a1097-0193
000862045 0247_ $$2Handle$$a2128/24301
000862045 0247_ $$2altmetric$$aaltmetric:69830841
000862045 0247_ $$2pmid$$apmid:31680379
000862045 0247_ $$2WOS$$aWOS:000493799800001
000862045 037__ $$aFZJ-2019-02411
000862045 041__ $$aEnglish
000862045 082__ $$a610
000862045 1001_ $$0P:(DE-Juel1)174035$$aLi, Changhong$$b0
000862045 245__ $$aImpact of acute sleep deprivation on dynamic functional connectivity states
000862045 260__ $$aNew York, NY$$bWiley-Liss$$c2020
000862045 3367_ $$2DRIVER$$aarticle
000862045 3367_ $$2DataCite$$aOutput Types/Journal article
000862045 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581085642_26287
000862045 3367_ $$2BibTeX$$aARTICLE
000862045 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862045 3367_ $$00$$2EndNote$$aJournal Article
000862045 520__ $$aSleep deprivation (SD) could amplify the temporal fluctuation of spontaneous brain activities that reflect different arousal levels using a dynamic functional connectivity (dFC) approach. Therefore, we intended to evaluate the test–retest reliability of dFC characteristics during rested wakefulness (RW), and to explore how the properties of these dynamic connectivity states were affected by extended durations of acute sleep loss (28/52 hr). We acquired resting‐state fMRI and neuropsychological datasets in two independent studies: (a) twice during RW and once after 28 hr of SD (n = 15) and (b) after 52 hr of SD and after 14 hr of recovery sleep (RS; n = 14). Sliding‐window correlations approach was applied to estimate their covariance matrices and corresponding three connectivity states were generated. The test–retest reliability of dFC properties demonstrated mean dwell time and fraction of connectivity states were reliable. After SD, the mean dwell time of a specific state, featured by strong subcortical–cortical anticorrelations, was significantly increased. Conversely, another globally hypoconnected state was significantly decreased. Subjective sleepiness and objective performances were separately positive and negative correlated with the increased and decreased state. Two brain connectivity states and their alterations might be sufficiently sensitive to reflect changes in the dynamics of brain mental activities after sleep loss.
000862045 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000862045 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x1
000862045 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x2
000862045 588__ $$aDataset connected to CrossRef
000862045 7001_ $$00000-0001-7457-9172$$aFronczek‐Poncelet, Judith$$b1
000862045 7001_ $$0P:(DE-Juel1)165827$$aLange, Denise$$b2
000862045 7001_ $$0P:(DE-HGF)0$$aHennecke, Eva$$b3
000862045 7001_ $$0P:(DE-Juel1)131691$$aKroll, Tina$$b4
000862045 7001_ $$0P:(DE-Juel1)138474$$aMatusch, Andreas$$b5$$ufzj
000862045 7001_ $$0P:(DE-HGF)0$$aAeschbach, Daniel$$b6
000862045 7001_ $$0P:(DE-Juel1)131672$$aBauer, Andreas$$b7
000862045 7001_ $$00000-0003-0336-6705$$aElmenhorst, Eva‐Maria$$b8
000862045 7001_ $$0P:(DE-Juel1)131679$$aElmenhorst, David$$b9$$eCorresponding author
000862045 773__ $$0PERI:(DE-600)1483485-6$$a10.1002/hbm.24855$$gp. hbm.24855$$n4$$p994-1005$$tHuman brain mapping$$v41$$x1047-3211$$y2020
000862045 8564_ $$uhttps://juser.fz-juelich.de/record/862045/files/Li_et_al-2020-Human_Brain_Mapping.pdf$$yOpenAccess
000862045 8564_ $$uhttps://juser.fz-juelich.de/record/862045/files/Li_et_al-2020-Human_Brain_Mapping.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862045 8767_ $$92019-03-20$$d2019-04-03$$eSubmission fee$$jZahlung erfolgt$$z75 USD
000862045 8767_ $$8HBM-19-0724$$92019-08-07$$d2020-02-07$$eAPC$$jZahlung erfolgt$$lDEAL: Wiley$$zWiley flipping journal, 2750€ -20%
000862045 909CO $$ooai:juser.fz-juelich.de:862045$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000862045 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174035$$aForschungszentrum Jülich$$b0$$kFZJ
000862045 9101_ $$0I:(DE-588b)5008462-8$$60000-0001-7457-9172$$aForschungszentrum Jülich$$b1$$kFZJ
000862045 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)165827$$aDepartment of Sleep and Human FactorsResearch, Institute of Aerospace Medicine,German Aerospace Center, Cologne, Germany$$b2
000862045 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aDepartment of Sleep and Human FactorsResearch, Institute of Aerospace Medicine,German Aerospace Center, Cologne, Germany$$b3
000862045 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131691$$aForschungszentrum Jülich$$b4$$kFZJ
000862045 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138474$$aForschungszentrum Jülich$$b5$$kFZJ
000862045 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aDivision of Sleep Medicine, Harvard MedicalSchool, Sleep Division, Boston, Massachusetts$$b6
000862045 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aDepartment of Sleep and Human FactorsResearch, Institute of Aerospace Medicine,German Aerospace Center, Cologne, Germany$$b6
000862045 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131672$$aForschungszentrum Jülich$$b7$$kFZJ
000862045 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131672$$aDepartment of Neurology, Medical Faculty,Heinrich-Heine-University Düsseldorf,Düsseldorf, Germany$$b7
000862045 9101_ $$0I:(DE-HGF)0$$60000-0003-0336-6705$$aDepartment of Sleep and Human FactorsResearch, Institute of Aerospace Medicine,German Aerospace Center, Cologne, Germany$$b8
000862045 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131679$$aForschungszentrum Jülich$$b9$$kFZJ
000862045 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131679$$aDivision of Medical Psychology, RheinischeFriedrich-Wilhelms-University Bonn, Bonn,Germany$$b9
000862045 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000862045 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x1
000862045 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x2
000862045 9141_ $$y2020
000862045 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862045 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000862045 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000862045 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCEREB CORTEX : 2017
000862045 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862045 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862045 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862045 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862045 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCEREB CORTEX : 2017
000862045 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862045 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000862045 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862045 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000862045 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000862045 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862045 920__ $$lyes
000862045 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000862045 980__ $$ajournal
000862045 980__ $$aVDB
000862045 980__ $$aUNRESTRICTED
000862045 980__ $$aI:(DE-Juel1)INM-2-20090406
000862045 980__ $$aAPC
000862045 9801_ $$aAPC
000862045 9801_ $$aFullTexts