000862051 001__ 862051
000862051 005__ 20240712100916.0
000862051 0247_ $$2doi$$a10.5194/acp-19-425-2019
000862051 0247_ $$2ISSN$$a1680-7316
000862051 0247_ $$2ISSN$$a1680-7324
000862051 0247_ $$2Handle$$a2128/22099
000862051 0247_ $$2WOS$$aWOS:000455810000001
000862051 0247_ $$2altmetric$$aaltmetric:53793748
000862051 037__ $$aFZJ-2019-02417
000862051 082__ $$a550
000862051 1001_ $$0P:(DE-Juel1)169614$$aDiallo, Mohamadou$$b0$$eCorresponding author
000862051 245__ $$aStructural changes in the shallow and transition branch of the Brewer–Dobson circulation induced by El Niño
000862051 260__ $$aKatlenburg-Lindau$$bEGU$$c2019
000862051 3367_ $$2DRIVER$$aarticle
000862051 3367_ $$2DataCite$$aOutput Types/Journal article
000862051 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1556027976_23189
000862051 3367_ $$2BibTeX$$aARTICLE
000862051 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862051 3367_ $$00$$2EndNote$$aJournal Article
000862051 520__ $$aThe stratospheric Brewer–Dobson circulation (BDC) determines the transport and atmospheric lifetime of key radiatively active trace gases and further impacts surface climate through downward coupling. Here, we quantify the variability in the lower stratospheric BDC induced by the El Niño–Southern Oscillation (ENSO), using satellite trace gas measurements and simulations with the Lagrangian chemistry transport model, CLaMS, driven by ERA-Interim and JRA-55 reanalyses. We show that despite discrepancies in the deseasonalized ozone (O3) mixing ratios between CLaMS simulations and satellite observations, the patterns of changes in the lower stratospheric O3 anomalies induced by ENSO agree remarkably well over the 2005–2016 period. Particularly during the most recent El Niño in 2015–2016, both satellite observations and CLaMS simulations show the largest negative tropical O3 anomaly in the record. Regression analysis of different metrics of the BDC strength, including mean age of air, vertical velocity, residual circulation, and age spectrum, shows clear evidence of structural changes in the BDC in the lower stratosphere induced by El Niño, consistent with observed O3 anomalies. These structural changes during El Niño include a weakening of the transition branch of the BDC between about 370 and 420 K (∼100–70 hPa) and equatorward of about 60∘ and a strengthening of the shallow branch at the same latitudes and between about 420 and 500 K (∼70–30 hPa). The slowdown of the transition branch is due to an upward shift in the dissipation height of the large-scale and gravity waves, while the strengthening of the shallow branch results mainly from enhanced gravity wave breaking in the tropics–subtropics combined with enhanced planetary wave breaking at high latitudes. The strengthening of the shallow branch induces negative tropical O3 anomalies due to enhanced tropical upwelling, while the weakening of the transition branch combined with enhanced downwelling due to the strengthening shallow branch leads to positive O3 anomalies in the extratropical upper troposphere–lower stratosphere (UTLS). Our results suggest that a shift in the ENSO basic state toward more frequent El Niño-like conditions in a warmer future climate will substantially alter UTLS trace gas distributions due to these changes in the vertical structure of the stratospheric circulation.
000862051 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000862051 588__ $$aDataset connected to CrossRef
000862051 7001_ $$0P:(DE-Juel1)129130$$aKonopka, Paul$$b1$$ufzj
000862051 7001_ $$0P:(DE-HGF)0$$aSantee, Michelle L.$$b2
000862051 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b3
000862051 7001_ $$0P:(DE-Juel1)156119$$aTao, Mengchu$$b4$$ufzj
000862051 7001_ $$00000-0003-3420-9454$$aWalker, Kaley A.$$b5
000862051 7001_ $$00000-0002-3756-7794$$aLegras, Bernard$$b6
000862051 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b7
000862051 7001_ $$0P:(DE-Juel1)129117$$aErn, Manfred$$b8
000862051 7001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b9$$ufzj
000862051 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-19-425-2019$$gVol. 19, no. 1, p. 425 - 446$$n1$$p425 - 446$$tAtmospheric chemistry and physics$$v19$$x1680-7324$$y2019
000862051 8564_ $$uhttps://juser.fz-juelich.de/record/862051/files/invoice_Helmholtz-PUC-2019-15.pdf
000862051 8564_ $$uhttps://juser.fz-juelich.de/record/862051/files/acp-19-425-2019.pdf$$yOpenAccess
000862051 8564_ $$uhttps://juser.fz-juelich.de/record/862051/files/invoice_Helmholtz-PUC-2019-15.pdf?subformat=pdfa$$xpdfa
000862051 8564_ $$uhttps://juser.fz-juelich.de/record/862051/files/acp-19-425-2019.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862051 8767_ $$8Helmholtz-PUC-2019-15$$92019-04-01$$d2019-04-03$$eAPC$$jZahlung erfolgt$$pacp-2018-688
000862051 909CO $$ooai:juser.fz-juelich.de:862051$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000862051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169614$$aForschungszentrum Jülich$$b0$$kFZJ
000862051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129130$$aForschungszentrum Jülich$$b1$$kFZJ
000862051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b3$$kFZJ
000862051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156119$$aForschungszentrum Jülich$$b4$$kFZJ
000862051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b7$$kFZJ
000862051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129117$$aForschungszentrum Jülich$$b8$$kFZJ
000862051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b9$$kFZJ
000862051 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000862051 9141_ $$y2019
000862051 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862051 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000862051 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862051 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2017
000862051 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000862051 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000862051 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862051 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862051 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862051 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862051 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000862051 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2017
000862051 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862051 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862051 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862051 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000862051 9801_ $$aAPC
000862051 9801_ $$aFullTexts
000862051 980__ $$ajournal
000862051 980__ $$aVDB
000862051 980__ $$aUNRESTRICTED
000862051 980__ $$aI:(DE-Juel1)IEK-7-20101013
000862051 980__ $$aAPC
000862051 981__ $$aI:(DE-Juel1)ICE-4-20101013