Hauptseite > Publikationsdatenbank > A machine learning approach for automated fine-tuning of semiconductor spin qubits > print |
001 | 862060 | ||
005 | 20210130001145.0 | ||
024 | 7 | _ | |a 10.1063/1.5088412 |2 doi |
024 | 7 | _ | |a 0003-6951 |2 ISSN |
024 | 7 | _ | |a 1077-3118 |2 ISSN |
024 | 7 | _ | |a 1520-8842 |2 ISSN |
024 | 7 | _ | |a 2128/22026 |2 Handle |
024 | 7 | _ | |a WOS:000463657000023 |2 WOS |
024 | 7 | _ | |a altmetric:58461880 |2 altmetric |
037 | _ | _ | |a FZJ-2019-02424 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Teske, Julian |0 P:(DE-Juel1)177034 |b 0 |
245 | _ | _ | |a A machine learning approach for automated fine-tuning of semiconductor spin qubits |
260 | _ | _ | |a Melville, NY |c 2019 |b American Inst. of Physics |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1554376489_19287 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a While spin qubits based on gate-defined quantum dots have demonstrated very favorable properties for quantum computing, one remaining hurdle is the need to tune each of them into a good operating regime by adjusting the voltages applied to electrostatic gates. The automation of these tuning procedures is a necessary requirement for the operation of a quantum processor based on gate-defined quantum dots, which is yet to be fully addressed. We present an algorithm for the automated fine-tuning of quantum dots and demonstrate its performance on a semiconductor singlet-triplet qubit in GaAs. The algorithm employs a Kalman filter based on Bayesian statistics to estimate the gradients of the target parameters as a function of gate voltages, thus learning the system response. The algorithm's design is focused on the reduction of the number of required measurements. We experimentally demonstrate the ability to change the operation regime of the qubit within 3–5 iterations, corresponding to 10–15 min of lab-time. |
536 | _ | _ | |a 144 - Controlling Collective States (POF3-144) |0 G:(DE-HGF)POF3-144 |c POF3-144 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Humpohl, Simon |0 P:(DE-Juel1)172767 |b 1 |
700 | 1 | _ | |a Otten, Rene |0 P:(DE-Juel1)174088 |b 2 |
700 | 1 | _ | |a Bethke, Patrick |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Cerfontaine, Pascal |0 0000-0002-8227-4018 |b 4 |
700 | 1 | _ | |a Dedden, Jonas |0 P:(DE-Juel1)176992 |b 5 |
700 | 1 | _ | |a Ludwig, Arne |0 0000-0002-2871-7789 |b 6 |
700 | 1 | _ | |a Wieck, Andreas D. |0 0000-0001-9776-2922 |b 7 |
700 | 1 | _ | |a Bluhm, Hendrik |0 P:(DE-Juel1)172019 |b 8 |e Corresponding author |
773 | _ | _ | |a 10.1063/1.5088412 |g Vol. 114, no. 13, p. 133102 - |0 PERI:(DE-600)1469436-0 |n 13 |p 133102 - |t Applied physics letters |v 114 |y 2019 |x 1077-3118 |
856 | 4 | _ | |y Published on 2019-04-02. Available in OpenAccess from 2020-04-02. |u https://juser.fz-juelich.de/record/862060/files/1.5088412.pdf |
856 | 4 | _ | |y Published on 2019-04-02. Available in OpenAccess from 2020-04-02. |x pdfa |u https://juser.fz-juelich.de/record/862060/files/1.5088412.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:862060 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)177034 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)172767 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)174088 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)176992 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)172019 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-144 |2 G:(DE-HGF)POF3-100 |v Controlling Collective States |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b APPL PHYS LETT : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-11-20170113 |k PGI-11 |l JARA Institut Quanteninformation |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-11-20170113 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|