000862061 001__ 862061
000862061 005__ 20240711113726.0
000862061 0247_ $$2doi$$a10.1038/s41567-018-0141-9
000862061 0247_ $$2ISSN$$a1745-2473
000862061 0247_ $$2ISSN$$a1745-2481
000862061 0247_ $$2WOS$$aWOS:000440583300022
000862061 0247_ $$2altmetric$$aaltmetric:42067145
000862061 037__ $$aFZJ-2019-02425
000862061 082__ $$a530
000862061 1001_ $$00000-0002-5815-8463$$aDinklage, A.$$b0$$eCorresponding author
000862061 245__ $$aMagnetic configuration effects on the Wendelstein 7-X stellarator
000862061 260__ $$aBasingstoke$$bNature Publishing Group$$c2018
000862061 3367_ $$2DRIVER$$aarticle
000862061 3367_ $$2DataCite$$aOutput Types/Journal article
000862061 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1554385941_19525
000862061 3367_ $$2BibTeX$$aARTICLE
000862061 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862061 3367_ $$00$$2EndNote$$aJournal Article
000862061 520__ $$aThe two leading concepts for confining high-temperature fusion plasmas are the tokamak and the stellarator. Tokamaks are rotationally symmetric and use a large plasma current to achieve confinement, whereas stellarators are non-axisymmetric and employ three-dimensionally shaped magnetic field coils to twist the field and confine the plasma. As a result, the magnetic field of a stellarator needs to be carefully designed to minimize the collisional transport arising from poorly confined particle orbits, which would otherwise cause excessive power losses at high plasma temperatures. In addition, this type of transport leads to the appearance of a net toroidal plasma current, the so-called bootstrap current. Here, we analyse results from the first experimental campaign of the Wendelstein 7-X stellarator, showing that its magnetic-field design allows good control of bootstrap currents and collisional transport. The energy confinement time is among the best ever achieved in stellarators, both in absolute figures (τE > 100 ms) and relative to the stellarator confinement scaling. The bootstrap current responds as predicted to changes in the magnetic mirror ratio. These initial experiments confirm several theoretically predicted properties of Wendelstein 7-X plasmas, and already indicate consistency with optimization measures.
000862061 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000862061 588__ $$aDataset connected to CrossRef
000862061 7001_ $$0P:(DE-HGF)0$$aBeidler, C. D.$$b1
000862061 7001_ $$0P:(DE-HGF)0$$aHelander, P.$$b2
000862061 7001_ $$0P:(DE-HGF)0$$aFuchert, G.$$b3
000862061 7001_ $$0P:(DE-HGF)0$$aMaaßberg, H.$$b4
000862061 7001_ $$0P:(DE-HGF)0$$aRahbarnia, K.$$b5
000862061 7001_ $$0P:(DE-HGF)0$$aSunn Pedersen, T.$$b6
000862061 7001_ $$0P:(DE-HGF)0$$aTurkin, Y.$$b7
000862061 7001_ $$00000-0002-2606-5289$$aWolf, R. C.$$b8
000862061 7001_ $$0P:(DE-HGF)0$$aAlonso, A.$$b9
000862061 7001_ $$00000-0003-2390-4240$$aAndreeva, T.$$b10
000862061 7001_ $$0P:(DE-HGF)0$$aBlackwell, B.$$b11
000862061 7001_ $$00000-0003-4289-3532$$aBozhenkov, S.$$b12
000862061 7001_ $$0P:(DE-HGF)0$$aButtenschön, B.$$b13
000862061 7001_ $$0P:(DE-HGF)0$$aCzarnecka, A.$$b14
000862061 7001_ $$00000-0002-4846-4598$$aEffenberg, F.$$b15
000862061 7001_ $$0P:(DE-Juel1)176537$$aFeng, Y.$$b16$$ufzj
000862061 7001_ $$0P:(DE-HGF)0$$aGeiger, J.$$b17
000862061 7001_ $$0P:(DE-HGF)0$$aHirsch, M.$$b18
000862061 7001_ $$00000-0003-0971-5937$$aHöfel, U.$$b19
000862061 7001_ $$0P:(DE-HGF)0$$aJakubowski, M.$$b20
000862061 7001_ $$0P:(DE-HGF)0$$aKlinger, T.$$b21
000862061 7001_ $$0P:(DE-HGF)0$$aKnauer, J.$$b22
000862061 7001_ $$0P:(DE-HGF)0$$aKocsis, G.$$b23
000862061 7001_ $$0P:(DE-Juel1)130075$$aKrämer-Flecken, A.$$b24
000862061 7001_ $$0P:(DE-HGF)0$$aKubkowska, M.$$b25
000862061 7001_ $$0P:(DE-HGF)0$$aLangenberg, A.$$b26
000862061 7001_ $$0P:(DE-HGF)0$$aLaqua, H. P.$$b27
000862061 7001_ $$0P:(DE-HGF)0$$aMarushchenko, N.$$b28
000862061 7001_ $$00000-0002-9257-7864$$aMollén, A.$$b29
000862061 7001_ $$aNeuner, U.$$b30
000862061 7001_ $$aNiemann, H.$$b31
000862061 7001_ $$aPasch, E.$$b32
000862061 7001_ $$00000-0001-6617-8459$$aPablant, N.$$b33
000862061 7001_ $$00000-0002-3696-7067$$aRudischhauser, L.$$b34
000862061 7001_ $$aSmith, H. M.$$b35
000862061 7001_ $$0P:(DE-Juel1)6790$$aSchmitz, O.$$b36$$ufzj
000862061 7001_ $$0P:(DE-HGF)0$$aStange, T.$$b37
000862061 7001_ $$0P:(DE-HGF)0$$aSzepesi, T.$$b38
000862061 7001_ $$00000-0002-2370-409X$$aWeir, G.$$b39
000862061 7001_ $$0P:(DE-HGF)0$$aWindisch, T.$$b40
000862061 7001_ $$00000-0003-2991-1484$$aWurden, G. A.$$b41
000862061 7001_ $$0P:(DE-Juel1)145222$$aZhang, D.$$b42$$ufzj
000862061 773__ $$0PERI:(DE-600)2206346-8$$a10.1038/s41567-018-0141-9$$gVol. 14, no. 8, p. 855 - 860$$n8$$p855 - 860$$tNature physics$$v14$$x1745-2481$$y2018
000862061 8564_ $$uhttps://juser.fz-juelich.de/record/862061/files/s41567-018-0141-9.pdf$$yRestricted
000862061 8564_ $$uhttps://juser.fz-juelich.de/record/862061/files/s41567-018-0141-9.pdf?subformat=pdfa$$xpdfa$$yRestricted
000862061 909CO $$ooai:juser.fz-juelich.de:862061$$pVDB
000862061 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176537$$aForschungszentrum Jülich$$b16$$kFZJ
000862061 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130075$$aForschungszentrum Jülich$$b24$$kFZJ
000862061 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6790$$aForschungszentrum Jülich$$b36$$kFZJ
000862061 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145222$$aForschungszentrum Jülich$$b42$$kFZJ
000862061 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000862061 9141_ $$y2019
000862061 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000862061 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT PHYS : 2017
000862061 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862061 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862061 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862061 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862061 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862061 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862061 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862061 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862061 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862061 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bNAT PHYS : 2017
000862061 920__ $$lyes
000862061 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000862061 980__ $$ajournal
000862061 980__ $$aVDB
000862061 980__ $$aI:(DE-Juel1)IEK-4-20101013
000862061 980__ $$aUNRESTRICTED
000862061 981__ $$aI:(DE-Juel1)IFN-1-20101013