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Supplementary Figure 1:

Surface plot of the specific heat capacity divided by temperature obtained from
Cep.5Lag.sBs. External magnetic field is applied along [110] direction and regions of phases I, II, and IV are briefly noted.
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Supplementary Figure 2: Quasi-adiabatic MCE in Ce.sLao 5Bs superimposed on the contour plot of its entropy. a,
Representative Tyaa(B) curves with Thix = 0.02 K, 0.4 K, and 0.8 K are shown. For a reference, S, = RIn2 line is inserted with
the black dashed-line and the background is the contour plot of the entropy. Black and red solid-lines are results for increasing
and decreasing field, respectively. b, Tgada(B) curves with Thix = 0.4 K are displayed. The model calculations without
field-induced heating are exhibited with dash-dotted lines. The blue vertical dashed-line is placed to demarcate phase II-IV
transition. ¢, Tqada(B) curves with Thix = 0.02 K are displayed. The blue vertical dashed-line is placed where |dTgaq(B)/dB|
is the largest in down-sweep. The sweep-rate is 0.1 T min~! in all panels.
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Supplementary Figure 3: Quasi-adiabatic MCE observed in Ceg.2sLao.7sBs. a, Black and red solid-lines are Tqaa(B)
curves with increasing and decreasing field, respectively. The temperature of the mixing chamber Thix is 0.02 K. The blue

vertical dashed line marks the phase transition between phase I and phase IV. b, Curves for the quasi-adiabatic temperature
Tyad(B) are shown at Thmix = 0.4 K. The sweep-rate is 0.2 T min~! in both panels.



Supplementary Notes
Supplementary Note 1

Surface plot of the specific heat capacity of CeysLag ;B¢ divided by the temperature: Specific heat
capacity under constant pressure and field, C), g, of CegsLag 5B is measured as a function of temperature. The
values of the external magnetic field are from 0 T to 4 T with 0.25 T interval. Then, the obtained C), p(T") curves
compose the frame of the interpolated surface plot. Field-insensitive peaks around 1 K and below 2.5 T are clearly
shown and we suspect these peaks indicate rather broadened phase transition between phase I and phase IV. As the
field is further increased, phase IV is suppressed and phase II emerges. This can be recognized by the field-induced
(1/2 1/2 1/2) Bragg intensity (refer to Ref. 37 in the main text). The phase transition is not very clear in 2D plots
but these are more distinguishable in the 3D plot.

Supplementary Note 2

Analysis of the quasi-adiabatic MCE: Here, we derive the differential equation for the theoretical quasi-
adiabatic temperature, quad (B). First, we consider a term for the reversible (equilibrium) MCE, and then add a term
which reflects an excessive field-induced heating. Given that the specimen with a virtual temperature T(?ad is linked

to the mixing chamber at the temperature of Thix, there should also be a term representing a natural relaxation of

T(?ad to Thix- Taking pieces together, we can express the general differential equation with respect to thg)ad /dB as
ATl  dT., | dTE 1 Taua
qad rev irr
- dTK (T, B 1
dB 4B — dB | [r|C,(T.B) /T (T, B), o

where the double signs are in the same order and the equation with the upper (lower) sign is applicable for the
situation with increasing (decreasing) field. dTy.y is an infinitesimal temperature change following an isentropic line.
dTlrir is an infinitesimal temperature change due to a field-induced heating other than the eddy current heating. It is
quantitatively discussed in the last paragraph of the current section that the eddy current heating is negligible. The
thermal conduction coefficient K (7T, B) between the sample and the mixing chamber is extracted by analyzing the
relaxation of Tyaq,5(t) to the Thix, and we found K(T, B) = aT? with negligible B-dependence below 5 T. Here,
a ~ 100 nW K~! and §=1.2. 7 in the last term is the field sweep-rate.

By experience, we already know that many of analytic expressions for thermodynamic functions are written in
various combinations of hyperbolic functions. Hence, using Ty x {tanh(B — B.) + 1} is a good starting point to
construct a reversible ansatz for the MCE since this function well depicts stepwise temperature change upon the phase
transition. Here, |dT§ad / dB| is the largest at an arbitrary critical field B.. We further elaborate this idea to imitate
isentropic lines calculated in the main text with the following expression,

C5v | cosh{ws¥ (B — Bc)}
Trov(Bg) =C* {tanh(w'" (B; — B. 1 2 2
(Br) =Cy™ {tanh(uwr™ (B DR wheY " cosh{wV(B; — Bc)}

+wi™ O (Br = Bi), (2)

where C7°V determines the size of the stepwise temperature change in a narrow range of field close to B., and
wi®v determines sharpness of the transition. Behavior of isentropic lines in a wider range of field are determined by
adjusting C3°V, w5V, and w5®. B;j and By are the initial and the final fields for the eq. (1), respectively. In this way,
all the blue curves for the reversible ansatz in Fig. 4 of the main text are generated.

The irreversible temperature change is approximated by the following function,

2
Ti(B) =) D {tanh(w;" (B - BfY) +1}. (3)
i=1

The envelopes of red-filled and black-hatched areas in Fig. 4 of the main text are described by the relation dQ/dB ~
Cp(Toad, B)dTy,(B)/dB.

Finally, eqs. (2) and (3) are implanted in eq. (1) and numerically solved for T(?ad(B). The parameters in eqs. (2)
and (3) are iteratively adjusted until the T}, ;(B) is optimized to the Tyaa(B). It should be emphasized that more

than two hyperbolic terms in eq. (3) do not improve the quality of the numerical estimation. Also, note that we



are dealing with only the second order phase transition because the ansatz for the equilibrium MCE is continuous
and reversible. Here, we do not enumerate values of parameters but summarize specific conditions which are unique
to different of phase boundaries. In case Bff =Bj =B; =B, =B. and D;"=D;, the heating curves are reversible.
II-IIT’ transitions are well described by this condition. When By=Bf # By =B; and Dj=D; AFM structural
phase transitions around III-ITI" boundaries are well reproduced. In case B =B) # By =B, and D # D;, the
dQ/dB curves can have different shapes depending on the sweep direction. With this condition, we can describe
highly hysteretic features in Tyaq(B).

It is suggested that an intensive scattering of quasiparticles triggered by strongly fluctuating local moments could
be the major cause of the irreversible Tg,q(B) in the vicinity of a phase transition. We designate this kind of field-
induced heating as the critical heating. The magnitude of the heating due to the domain motion, which we define as
the domain heating, is usually much smaller than the magnitude of the critical heating. Also, the domain heating is
not concentrated in a narrow range around a phase boundary. It is well represented in Fig. 4b of the main text that,
although the domain heating is easily distinguishable in phase III', T;,q(B) is monotonically increasing over wide the
range of field.

Assuming a cylindrical geometry of radius R, height L, power dissipation per unit volume by the eddy current is
given by P/V = E4(R)?/2p = R*(0B./0t)?/8p. The field is along the z-direction. Taking the average dimension
of the specimen R=L=1 mm and the resistivity p ~10 p{lcm, 0.26 nJ of eddy current heating Qcqqy is generated
for 40 min with » = 0.1 T min~!. At 0.1 K, the heat capacity, C, of 5 mg of CeBg is 0.37 puJK~!. Putting
the estimated values together, the temperature increase AT = Qeday/C becomes 0.7 mK for 40 min in a perfectly
adiabatic condition. It is definitely negligible compared to notable changes in Tqaa(B).

Supplementary Note 3

Critical points determined by quasi-adiabatic MCE in Ce;_,La,Bg with £=0.5 and 0.75: At x = 0.5,
the quasi-adiabatic MCE shows a broad transition feature between phase II and phase IV except at very low T" below
0.05 K (Supplementary Figure 2a). For T =0.4 K, eq. (3) is solved without a critical heating and solutions are
superimposed with dash-dotted lines as shown in the Supplementary Figure 2b. The steepest slope of the reversible
ansatz is assumed to appear at the critical field as noted by the vertical blue dashed-line. On the other hand, the
critical heating strongly affects the T,.q(B) at very low T': see the down-sweep in the Supplementary Figure 2c. In this
case, the numerical calculation is very difficult because we cannot estimate correct values for Cp (7, B) below 0.05 K.
The critical point is located where |dTyaq(B)/dB| has the largest slope (see the vertical dashed line in Supplementary
Figure. 2¢). It is conjectured that the MC sweep correctly captures intensive fluctuations of order parameters in the
vicinity of a critical point noted in Fig. 5c of the main text.

Supplementary Figure 3 exhibits Tqaq(B) curves in Ceg 25Lag 75Bg. When the mixing chamber is anchored to 0.02 K
(Supplementary Figure 3a), we observe the critical heating below 0.8 T and the star-shaped symbol in Fig. 5c¢ of the
main text is referenced to this value. We deduce that the quantum fluctuation regarding the I-IV phase transition
at 0.8 T is detected by the MC sweep. This statement is strongly supported by the observation of the maximum in
~o at the same field (Fig. 5b of the main text). In addition, it must be noted that there exists a subtle wiggling in
Tqaa(B) around 3.5 T below 0.05 K. This is suspected as reminiscent of the weak I-II transition. As the system is
away from T' = 0, the critical heating is no longer observed and only a paramagnetic response remains (Supplementary
Figure 3b). The spikes in the red curve is due to the flux jump from the superconducting magnet.



