000862112 001__ 862112
000862112 005__ 20220930130209.0
000862112 0247_ $$2doi$$a10.1063/1.5082733
000862112 0247_ $$2Handle$$a2128/23984
000862112 0247_ $$2WOS$$aWOS:000466614700053
000862112 037__ $$aFZJ-2019-02468
000862112 082__ $$a530
000862112 1001_ $$0P:(DE-Juel1)165703$$aFunck, Carsten$$b0$$ufzj
000862112 245__ $$aAn atomistic view on the Schottky barrier lowering applied to SrTiO 3 /Pt contacts
000862112 260__ $$aNew York, NY$$bAmerican Inst. of Physics$$c2019
000862112 3367_ $$2DRIVER$$aarticle
000862112 3367_ $$2DataCite$$aOutput Types/Journal article
000862112 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581580580_12469
000862112 3367_ $$2BibTeX$$aARTICLE
000862112 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862112 3367_ $$00$$2EndNote$$aJournal Article
000862112 520__ $$aThe interface between a metal and a semiconductor is known as Schottky contact and a key factor in semiconductor technologies. Those interfaces normally build an energetic barrier, which is responsible for the exponential current voltage dependence. Analytical models often describe the right trend for the description of the Schottky barrier height, but fail to predict the barrier properties quantitatively correct. To overcome this problem atomistic and quantum mechanical approaches are required such as the here applied density functional theory combined with the non-equilibrium Greens function method. So far, these methods have rarely been applied to wide band gap metal oxides, which leads to a lack in the understanding of oxide electronics. The presented study deals with the image force induced Schottky barrier lowering of a SrTiO3/Pt interface as a model system for wide band gap metal-oxide Schottky contacts. The Schottky barrier lowering is investigated for the case of different doping concentrations/positions and for different voltages. From a defect chemical point of view, oxygen vacancies act as donors in many metal oxides and dominate the electronic conduction in oxide electronics. Consequently, we investigated the Schottky barrier lowering induced by oxygen vacancies. The second doping mechanism is achieved in the sense of classical doping using Nb impurities, which form a conventional n-type donor. The atomistic simulation reveals the Schottky barrier lowering effect for both type of dopants. The results are compared to a standard analytical model regarding the Schottky barrier lowering.
000862112 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000862112 536__ $$0G:(DE-Juel1)jpgi70_20120501$$aModelling the Valency Change Memory Effect in Resistive Switching Random Access Memory (RRAM) (jpgi70_20120501)$$cjpgi70_20120501$$fModelling the Valency Change Memory Effect in Resistive Switching Random Access Memory (RRAM)$$x1
000862112 588__ $$aDataset connected to CrossRef
000862112 7001_ $$0P:(DE-Juel1)158062$$aMenzel, S.$$b1$$eCorresponding author
000862112 773__ $$0PERI:(DE-600)2583909-3$$a10.1063/1.5082733$$gVol. 9, no. 4, p. 045116 -$$n4$$p045116 -$$tAIP Advances$$v9$$x2158-3226$$y2019
000862112 8564_ $$uhttps://juser.fz-juelich.de/record/862112/files/1.5082733.pdf$$yOpenAccess
000862112 8564_ $$uhttps://juser.fz-juelich.de/record/862112/files/1.5082733.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862112 8767_ $$8ADV19-AR-00408-T_00390$$92019-04-04$$d2019-04-05$$eAPC$$jZahlung erfolgt$$lKK: Barbers$$pADV-AR-00408-T$$z1350 USD
000862112 909CO $$ooai:juser.fz-juelich.de:862112$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000862112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165703$$aForschungszentrum Jülich$$b0$$kFZJ
000862112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b1$$kFZJ
000862112 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000862112 9141_ $$y2019
000862112 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862112 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000862112 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862112 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAIP ADV : 2017
000862112 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000862112 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000862112 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862112 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862112 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862112 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862112 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862112 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862112 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862112 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000862112 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862112 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000862112 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000862112 980__ $$ajournal
000862112 980__ $$aVDB
000862112 980__ $$aI:(DE-Juel1)PGI-7-20110106
000862112 980__ $$aI:(DE-82)080012_20140620
000862112 980__ $$aAPC
000862112 980__ $$aUNRESTRICTED
000862112 9801_ $$aAPC
000862112 9801_ $$aFullTexts