001     862112
005     20220930130209.0
024 7 _ |a 10.1063/1.5082733
|2 doi
024 7 _ |a 2128/23984
|2 Handle
024 7 _ |a WOS:000466614700053
|2 WOS
037 _ _ |a FZJ-2019-02468
082 _ _ |a 530
100 1 _ |a Funck, Carsten
|0 P:(DE-Juel1)165703
|b 0
|u fzj
245 _ _ |a An atomistic view on the Schottky barrier lowering applied to SrTiO 3 /Pt contacts
260 _ _ |a New York, NY
|c 2019
|b American Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1581580580_12469
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The interface between a metal and a semiconductor is known as Schottky contact and a key factor in semiconductor technologies. Those interfaces normally build an energetic barrier, which is responsible for the exponential current voltage dependence. Analytical models often describe the right trend for the description of the Schottky barrier height, but fail to predict the barrier properties quantitatively correct. To overcome this problem atomistic and quantum mechanical approaches are required such as the here applied density functional theory combined with the non-equilibrium Greens function method. So far, these methods have rarely been applied to wide band gap metal oxides, which leads to a lack in the understanding of oxide electronics. The presented study deals with the image force induced Schottky barrier lowering of a SrTiO3/Pt interface as a model system for wide band gap metal-oxide Schottky contacts. The Schottky barrier lowering is investigated for the case of different doping concentrations/positions and for different voltages. From a defect chemical point of view, oxygen vacancies act as donors in many metal oxides and dominate the electronic conduction in oxide electronics. Consequently, we investigated the Schottky barrier lowering induced by oxygen vacancies. The second doping mechanism is achieved in the sense of classical doping using Nb impurities, which form a conventional n-type donor. The atomistic simulation reveals the Schottky barrier lowering effect for both type of dopants. The results are compared to a standard analytical model regarding the Schottky barrier lowering.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
536 _ _ |a Modelling the Valency Change Memory Effect in Resistive Switching Random Access Memory (RRAM) (jpgi70_20120501)
|0 G:(DE-Juel1)jpgi70_20120501
|c jpgi70_20120501
|f Modelling the Valency Change Memory Effect in Resistive Switching Random Access Memory (RRAM)
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Menzel, S.
|0 P:(DE-Juel1)158062
|b 1
|e Corresponding author
773 _ _ |a 10.1063/1.5082733
|g Vol. 9, no. 4, p. 045116 -
|0 PERI:(DE-600)2583909-3
|n 4
|p 045116 -
|t AIP Advances
|v 9
|y 2019
|x 2158-3226
856 4 _ |u https://juser.fz-juelich.de/record/862112/files/1.5082733.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/862112/files/1.5082733.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:862112
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165703
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)158062
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AIP ADV : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21