Home > Publications database > An atomistic view on the Schottky barrier lowering applied to SrTiO 3 /Pt contacts > print |
001 | 862112 | ||
005 | 20220930130209.0 | ||
024 | 7 | _ | |a 10.1063/1.5082733 |2 doi |
024 | 7 | _ | |a 2128/23984 |2 Handle |
024 | 7 | _ | |a WOS:000466614700053 |2 WOS |
037 | _ | _ | |a FZJ-2019-02468 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Funck, Carsten |0 P:(DE-Juel1)165703 |b 0 |u fzj |
245 | _ | _ | |a An atomistic view on the Schottky barrier lowering applied to SrTiO 3 /Pt contacts |
260 | _ | _ | |a New York, NY |c 2019 |b American Inst. of Physics |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1581580580_12469 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The interface between a metal and a semiconductor is known as Schottky contact and a key factor in semiconductor technologies. Those interfaces normally build an energetic barrier, which is responsible for the exponential current voltage dependence. Analytical models often describe the right trend for the description of the Schottky barrier height, but fail to predict the barrier properties quantitatively correct. To overcome this problem atomistic and quantum mechanical approaches are required such as the here applied density functional theory combined with the non-equilibrium Greens function method. So far, these methods have rarely been applied to wide band gap metal oxides, which leads to a lack in the understanding of oxide electronics. The presented study deals with the image force induced Schottky barrier lowering of a SrTiO3/Pt interface as a model system for wide band gap metal-oxide Schottky contacts. The Schottky barrier lowering is investigated for the case of different doping concentrations/positions and for different voltages. From a defect chemical point of view, oxygen vacancies act as donors in many metal oxides and dominate the electronic conduction in oxide electronics. Consequently, we investigated the Schottky barrier lowering induced by oxygen vacancies. The second doping mechanism is achieved in the sense of classical doping using Nb impurities, which form a conventional n-type donor. The atomistic simulation reveals the Schottky barrier lowering effect for both type of dopants. The results are compared to a standard analytical model regarding the Schottky barrier lowering. |
536 | _ | _ | |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |0 G:(DE-HGF)POF3-521 |c POF3-521 |f POF III |x 0 |
536 | _ | _ | |a Modelling the Valency Change Memory Effect in Resistive Switching Random Access Memory (RRAM) (jpgi70_20120501) |0 G:(DE-Juel1)jpgi70_20120501 |c jpgi70_20120501 |f Modelling the Valency Change Memory Effect in Resistive Switching Random Access Memory (RRAM) |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Menzel, S. |0 P:(DE-Juel1)158062 |b 1 |e Corresponding author |
773 | _ | _ | |a 10.1063/1.5082733 |g Vol. 9, no. 4, p. 045116 - |0 PERI:(DE-600)2583909-3 |n 4 |p 045116 - |t AIP Advances |v 9 |y 2019 |x 2158-3226 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/862112/files/1.5082733.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/862112/files/1.5082733.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:862112 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)165703 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)158062 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |2 G:(DE-HGF)POF3-500 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b AIP ADV : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|